GaN Talk a blog dedicated to crushing silicon
 
     

Four Ways GaN Technology Helps Save the Planet

Four Ways GaN Technology Helps Save the Planet
Apr 11 2017

Gallium nitride (GaN) is a better semiconductor than silicon. There are many crystals that are better than silicon, but the problem has always been that they are far too expensive to be used in every application where silicon is used. But, GaN can be grown as an inexpensive thin layer on top of a standard silicon wafer enabling devices that are faster, smaller, more efficient, and less costly than their aging silicon counterparts.

How we devised a wirelessly powered television set

How we devised a wirelessly powered television set
Mar 09 2017

Televisions can get their content wirelessly, but there is one set of wires they still need: those in their power cord. The consumer electronics industry has floated ideas for freeing TVs from their power cords, but this goal remains elusive. There are several reasons, such as the difficultly of meeting high-power requirements for large-screen TVs and the need for identifying an economical technology. Nevertheless, eGaN FETs could play a role in making TVs truly cordless devices.

eGaN Technology Reliability and Physics of Failure – How eGaN FETs are expected to behave as the result of high gate voltage stress conditions

eGaN Technology Reliability and Physics of Failure – How eGaN FETs are expected to behave as the result of high gate voltage stress conditions
Feb 03 2017

The previous installment in this series focused on the physics of failure surrounding thermo-mechanical reliability of EPC eGaN® wafer level chip-scale packages. A fundamental understanding of the potential failure modes under voltage bias is also important. This installment will provide an overview of the physics of failure associated with voltage bias at the gate electrode of gallium nitride (GaN) field effect transistors (FETs). Here we look at the case of taking the gate control voltage to the specified limit and beyond to investigate how eGaN FETs behave over a projected lifetime.

eGaN Technology Reliability and Physics of Failure - Thermo-mechanical board level reliability of eGaN devices

eGaN Technology Reliability and Physics of Failure - Thermo-mechanical board level reliability of eGaN devices
Jan 13 2017

The first three installments in this series covered field reliability experience and stress test qualification of Efficient Power Conversion (EPC) Corporation’s enhancement-mode gallium nitride (eGaN®) field effect transistors (FETs) and integrated circuits (ICs).  Excellent field reliability that was documented is the result of applying stress tests covering the intended operating conditions the devices will experience within applications.  Of equal importance is understanding the underlying physics of how eGaN® devices will fail when stressed beyond intended operating conditions (e.g. datasheet parameters and safe operating area).  This installment will take a deeper dive into the physics of failure centered around thermo-mechanical reliability of eGaN® wafer level chip-scale packages (WLCSP).

See, Learn, and Discuss eGaN Technology at CES 2017

See, Learn, and Discuss eGaN Technology at CES 2017
Dec 04 2016

Every year in January 2017, the world’s consumer electronics community gathers in Las Vegas at the Consumer Electronics Show (CES) to see, learn and discuss the latest innovations and products available in the world of electronics.

More than 3,800 exhibitors spread out across 2.47 million net square feet of exhibit space, is the location where over 170,000 industry professionals, 50,000 outside of the U.S. wander, ogle, and “play with” the latest electronic devices.

My Predictions for 2017

My Predictions for 2017
Nov 11 2016

In January of 2016 I made several predictions for the then-nascent year. Predictions were made for new markets such as wireless charging, augmented reality, autonomous vehicles, and advances in medical diagnostics and internet access. Progress in these markets was made on all fronts, sometimes faster and sometimes slower than anticipated. So here we are about to start a new year and, perhaps foolishly I am ready once again to predict the future.

Gallium Nitride Brings Sound Quality and Efficiency to Class-D Audio

Gallium Nitride Brings Sound Quality and Efficiency to Class-D Audio
Oct 27 2016

Class-D audio amplifiers have traditionally been looked down upon by audiophiles, and in most cases, understandably so. Switching transistors for Class-D amplifiers have never had the right combination of performance parameters to produce an amplifier with sufficient open-loop linearity to satisfy the most critical listeners. This restricted the classical analog modulator Class-D systems to lower-power, lower-quality sound systems.

To accomplish the required headline marketing THD+N performance targets, Class-D amplifiers have had to resort to using large amounts of feedback to compensate for their poor open-loop performance. By definition, large amounts of feedback introduce transient intermodulation distortion (TIM), which introduces a ‘harshness’ that hides the warm subtleties and color of the music that were intended for the listening experience.

Forget Everything You Thought You Knew About Semiconductors

Forget Everything You Thought You Knew About Semiconductors
Oct 13 2016

In past postings , we looked at the applications that have emerged because of new capabilities available with #GaN technology. We also discussed the transformational nature of some of these applications in areas like medicine, telecommunications,human-machine interfaces, and the delivery of electrical power itself (wireless power transfer). GaN technology is entering an era similar to the 80’s and 90’s when the utility of technological improvement was apparent across broad commercial markets. Consequentially, consumers will be willing to pay a premium for the life-style improvements enabled by these improvements thereby accelerating growth of GaN applications for the foreseeable future.