GaN Talk a blog dedicated to crushing silicon
Term: Drones
3 post(s) found

Sep 12, 2019

Harnessing the Power of GaN for Motor Drives – Servo drives, robotics, drones

Renee Yawger, Director of Marketing

With advancements in motor technology, power densities have increased; motors are built in smaller form factors and designed for higher speeds, and higher precision, which requires higher electrical frequencies.

3-phase brushless DC (BLDC) motors are compact for their power ratings, can be precisely controlled, offer high electro-mechanical efficiency, and can operate with minimal vibration when properly controlled. These motors are increasingly or exclusively used in precision applications like servo drives, robotics, such as surgical robots, and drones, such as quadcopters. To keep current ripple within a reasonable range, these motors – given their low inductance – require switching frequencies up to 100kHz. A FET that can operate efficiently at high frequency is required to minimize losses and offset the torque ripple in the motor which creates vibrations, reduces drive precision and decreases efficiency.

Apr 11, 2017

Four Ways GaN Technology Helps Save the Planet

Alex Lidow, Ph.D., CEO and Co-founder

Gallium nitride (GaN) is a better semiconductor than silicon. There are many crystals that are better than silicon, but the problem has always been that they are far too expensive to be used in every application where silicon is used. But, GaN can be grown as an inexpensive thin layer on top of a standard silicon wafer enabling devices that are faster, smaller, more efficient, and less costly than their aging silicon counterparts.

Sep 15, 2016

Drones…Up, Up, and Away

Alex Lidow, Ph.D., CEO and Co-founder

Drones are on the rise. In fact, use of drones is only limited by our imagination – from merely recreational (think “drone races”) to delivering packages (as promised by Amazon) to a range of life-saving military uses (such as real-time battlefield imaging). Emerging high speed, small size, and highly efficient gallium nitride power semiconductors are key contributors to the expansion of drone applications, including onboard equipment such as LiDAR imaging and navigation systems and 4G/5G communication transmitters. Let’s take a look at how GaN technology and the expansion of drone applications intersect.

A drone, or more technically, an unmanned aerial vehicle (UAV) is an aircraft without a pilot on board. Control of the drone is accomplished either under remote control from the ground or under control of an onboard computer.

Although drones originated mostly in military applications, civilian drones now vastly outnumber military drones, with estimates of over 9 million consumer drones to be sold in 2016 world wide for a total market value of near $3 billion.