博客 -- 氮化镓技术如何击败硅技术
Term: 窒化ガリウム
22 post(s) found

8月 02, 2023

A New Approach to Design a More Efficient Vacuum Cleaner Motor Drive Inverter Using EPC9176 Evaluation Boards

Marco Palma, Director of Motor Drives Systems and Applications

Learn how EPC’s new demo board, the EPC9176 with its six QFN-packaged GaN ICs allows for more efficient, high-performance vacuum cleaner motors.

5月 10, 2023

氮化镓器件的开关频率:在下一代高频电路中使用氮化镓技术

Renee Yawger, Director of Marketing

氮化镓(GaN)器件是一种非常坚硬和在机械方面非常稳定的宽带隙半导体材料,用于生产功率器件、射频元件和发光二极管 (LED)。其开关频率远高于硅器件,使电力电子设计人员能够利用氮化镓器件创建更小、更高效、性能更高的系统,这是以前采用硅技术难以实现。

1月 28, 2023

氮化镓功率集成电路通往可持续发展未来的道路

Renee Yawger, Director of Marketing

可持续能源是当今全球重要需求。发展中经济体努力建设能源基础设施以支持工业和为偏远村庄供电。与此同时,工业化经济体正在努力平衡对更大供电需求的相互冲突和减少对环境的影响。氮化镓(GaN)集成电路为设计人员提供具备更高功率密度、更高效和可使能新应用优势的功率器件。随着全球能源成本的上升,氮化镓器件的普及化急剧加快也就不足为奇了。

1月 20, 2023

Shrink Motor Drives for eBikes and Drones

Marco Palma, Director of Motor Drives Systems and Applications

GaN is a game changer for motor drive applications. For designers to take advantage of this technology, fast and reliable time-to-market is critical. Easy-to-use reference designs using state-of-the-art electronics and techniques provide a valuable tool to speed time to market. The EPC9173 tool allows designers of eBikes and drones to enhance motor system size, performance, range, precision, and torque, all while simplifying design for faster time-to-market.  

The EPC9173 integrates all the necessary circuits to operate a 3-phase BLDC motor with high performance, 48 V input, 1.5kW output, and three-phase inverter using six EPC23101  GaN ICs. Thanks to the high-power density and the high electrical conductivity of GaN ICs, the EPC9173 delivers up to 25 ARMS on each leg and supports PWM switching frequencies up to 250 kHz under a natural convection passive heatsink. The resultant quality of the current output waveforms, lesser torque oscillations, and total system efficiency increase the performance of the motor-drive system. Further, the extremely small size of this inverter allows integration into the motor housing resulting in the lowest EMI, highest density, and lowest weight.

8月 25, 2022

How to Design a 2 kW 48 V/12 V Bi-Directional Power Module with GaN FETs for 48 V Mild Hybrid Electric Vehicles

Tiziano Morganti, Senior Field Application Engineer at Efficient Power Conversion

Environmental pressures are creating pressure to quickly adopt newer, cleaner, and more efficient transportation options.  In 2025, 1 in 10 vehicles sold are expected to be a more fuel efficient 48 V mild hybrid.  These systems will require a 48V – 12V bidirectional converter, with power ranging from 1.5 kW to 6 kW. The design priorities for these systems are size, cost, and high reliability. GaN power conversion solutions are perfect to support a 48 V to 12 V bidirectional converter used in these newer models.

A new reference design demo board, the EPC9165, is available to help jump start the design of a 2 kW bi-directional converter.  The EPC9165 is a synchronous buck/boost converter with other supporting circuitry including current sensors and temperature sensor.  The EPC9528 controller board ships with the EPC9165 to incorporate digital control and housekeeping power supply; this board uses the dsPIC33CK256MP503 digital controller from Microchip.

8月 22, 2022

Making a Fast, Efficient, Small 350 V Half Bridge Module with eGaN FETs

EPC Guest Blogger,

Submitted by Richard Locarni, Director of New Business Development, Sensitron and Brian Miller, Field Application Engineer, EPC

The basic building block used in many power systems is the half bridge which consists of two power FETs in series and their respective gate drivers. While discrete FETs and gate drivers can be used to make this function on a board, often it is advantageous to use a half-bridge module.  There are many benefits of using a half-bridge module including the use of a single pre-qualified part, shorter lead times, and higher performance.  Sensitron (sensitron.com) has been a supplier of power modules for over fifty years, and their latest product is even more attractive due to the use of EPC’s eGaN FETs.  Sensitron collaborated with Efficient Power Corporation to use the recently released EPC2050 GaN FET to develop a 350 V half bridge module. Designed for commercial, industrial, and aerospace applications, the SPG025N035P1B half bridge intelligent power module is rated at 20 A and can be used to control over 5 kW.  Shown in Figure 1 is the significant package size reduction which was achieved by upgrading from Si and SiC to GaN:

8月 04, 2022

Use the Superior Power Density of Gallium Nitride FETs to Design a USB PD3.1 Power Supply with a 240 W, Universal AC Input

Cecilia Contenti, Vice President Of Strategic Marketing at Efficient Power Conversion

48 volts is increasingly being adopted as the new standard for computing data centers and consumer electronics such as laptops. The new USB PD3.1 standard is also making inroads into laptops driven in part by the increase in USB voltage to 48 V that increases the total power delivery up to 240 W given a current limit of 5 A for the connectors and cables. Compatible power supplies using the new USB PD standard also face increasing pressure to yield a small form factor solution driving the need for high power-density. The fast-switching speed and low RDSon of GaN FETs address this challenge in multiple circuits that make up the power supply.

8月 03, 2022

CEO Corner – Alex Lidow Dispels the Myth that GaN Devices Cost More than Silicon

Alex Lidow, Ph.D., CEO and Co-founder

Back in 2015 Venture Beat published an article on gallium nitride chips taking over from silicon.  In that article I made the assertion that widespread adoption of gallium nitride-based power semiconductors would be possible because GaN FETs would have higher performance AND lower cost than silicon.  Yet, there is still a widespread misconception that GaN has not yet reached that milestone…that is a false myth.  In this blog post, I will attempt to dispel this myth with the caveat that this discussion is limited to devices rated at less than 400 V, as that is the application focus for EPC’s FET and IC products.

It has been more than 12 years since the first GaN-on-Si power transistors started in volume production, and in many applications, such as lidar and space electronics, adoption has been extremely rapid.  But what about other markets such as consumer products, computers, motor drives, and automotive?  Even in each of those areas GaN devices have started to appear in volume as the predicted tipping point of better performance AND lower cost is a reality.

3月 16, 2022

See How GaN is Leading the 48 V Revolution Across Multiple Industries at APEC 2022

Rick Pierson, Senior Manager, Digital Marketing

APEC is The Premier Global Event in Applied Power Electronics

Preparations are well underway for EPC to head to Houston for the Applied Power Electronics Conference (APEC). The team is excited to be back, in-person exhibiting a large variety of demonstrations showcasing how the superior performance of GaN is transforming the delivery of power across many industries, including computing, communications, and e-mobility.

Here’s a sneak peek at some of the key application areas we will be showcasing in Booth 1302 at APEC.

2月 11, 2022

The 48 V/12 V Automotive Evaluation Power Modules (EPC9137, EPC9163, EPC9165) Utilize the Two-Phase Synchronous Buck/Boost Topology

Yuanzhe Zhang, Director, Applications Engineering at EPC

The 48 V/12 V automotive evaluation power modules (EPC9137, EPC9163, EPC9165, etc) utilize the two-phase synchronous buck/boost topology. The edge connectors and controller card are also designed to operate two modules in parallel with one controller, effectively achieving four-phase and therefore double the rated current and power. An example using EPC9137 modules are shown in Figure 1.