

THE GaN JOURNEY BEGINS

• Why Gallium Nitride?

• Breaking down the barriers

• What the future might hold

- GaN offers superior performance compared with both silicon and silicon carbide
 - R_{DSON} x Area
 - Very high switching speed
 - High Voltage Capability at low R_{DS(ON)}
 - Body Diode has no Q_{RR}

- Device-grade gallium nitride can be grown on top of silicon wafers and processed in standard CMOS facilities
- GaN-on-silicon offers the advantage of self-isolation and therefore efficient power devices can now be made monolithically
- EPC has developed proprietary technology for the first *enhancementmode* devices (eGaN[™]) to be offered on the market!

Device Construction

Flip Chip Assembly

Does it enable significant new capabilities? Is it VERY cost effective to the user? Is it reliable?

Is it easy to use?

Does it enable significant new capabilities? Is it VERY cost effective to the user? Is it reliable? Is it easy to use?

eGaN FETs are Higher Performance: Figure of Merit

FOM = Rdson x Qg (200V)

eGaN FETs are Higher Performance: *Conduction* Figure of Merit

- The Conduction Figure of Merit is the best predictor of relative device performance when the transistor is used in a rectifier function
- The relative performance between eGaN and silicon is more pronounced as the rated voltage increases

eGaN FETs are Higher Performance Switching Figure of Merit

- The Switching Figure of Merit is the best predictor of relative device performance in hard switched converters
- The relative performance between eGaN and silicon is even greater than for conduction FOM

Converter Efficiency

EPC1001 at 250 kHz

Reduction of light load efficiency and high conversion voltage efficiency is mostly due to the limitations of the commercial driver IC

GaN switching speed is limited by the driver circuit

Eik	e <u>E</u> d	it <u>Y</u> ertica	l H <u>o</u> riz/Ad	oq <u>I</u> rig	<u>D</u> isplay	Gursors	Meagure	M <u>a</u> sks	Math	М⊻5соре	Utilities	<u>H</u> elp	
Tek	Ru	n Sar	nple	4.	160 Acqs			2	D Apr 09	9 17:57:41			Buitons
						Ŧ							
	- .					· + · · ·							
					A.	~							
	-	- Jona Jos				withour		Suriam	nin	ر			
											Árca	(04)	991.ônás
	- .				20	n <u>S</u>					- µ: \$ - m: \$	390,4291 323,3n	11n M: 1.11µ
	F					Ŧ						1.542n	n: 4.448
24	- htm		who have	who who	/i+++	- <u></u> ‡ A	-	- 	-		Free Free P: S	(02)! ?	977777
	<u></u>	e contrast				- <u>†</u>]/	MAAA	Λ.,	~ ~	my ann	- m: 9 σ: 0	2 0.0	M: ? n: 0.0
	E.			·		, I	ΥVΥ	~	· · · ·				
	F			- \		= <u>‡</u> /\{					-		
	È			_ }	and a start	~ <u>₽</u>		جر ا					
	Ę				1	1				:	Ĭ Į		
	È.			:	4 M W	мŧ							
4 '	F				1: ""	‡					-		
	F,		.	.	.∥∙ ⊥l⊥⊥⊥	, †	.	.	·		=		
	Ch 1 Ch 3	2.0Y 1.0Y	DWDS	Ch2 Ch4	20.0V 1.0A	Ω Φ5	M 20.0n Al Ch2	is 1.25GS. √ 12.4¥	<u>е па</u>	0.0pe.(ot			

Does it enable significant new capabilities? Is it VERY cost effective to the user? Is it reliable? Is it easy to use?

eGaN FETs are cost effective

Smaller Die Sizes

The on-resistance $(R_{DS(ON)})$ for a given device area is a key determinant of product cost.

The elimination of the package further reduces cost

200V Silicon Device (30 milli Ohms)

200V GaN Device (25 milli Ohms)

	2010	2015	
Starting Material	same	same	
Epi Growth	higher	same	
Wafer Fab	same	lower	
Test	same	same	
Assembly	lower	lower	
OVERALL	higher	lower	

Does it enable significant new capabilities? Is it VERY cost effective to the user? Is it reliable? Is it easy to use?

eGaN FETs are reliable

Devices are well behaved after HTRB, HTGB, THB, and Temp Cycling Stress.

HTRB 150C EPC1010 Idss

48V-1V Converters show no change in efficiency after 1200 hours of operation

Does it enable significant new capabilities? Is it VERY cost effective to the user? Is it reliable?

Is it easy to use?

It's just like a MOSFET except for TWO things (1) The high frequency capability makes circuits using GaN transistors very sensitive to layout (2) GaN transistors are more sensitive to gate rupture than power MOSFETs

eGaN Characteristics

What the Future Holds

Full-Bridge with Driver

What the Future Holds

Three Phase Monolithic Motor Drive

Hybrid POL

- Many new applications are enabled due to eGaN's quantum leap in frequency capability
- After over one year on the market, eGaN has started to replace MOSFETs in many high performance applications
- Basic product reliability has been established
- The largest impediment to the rapid adoption of eGaN is the need for a low-cost, highperformance gate drive.

The end of the road for Silicon ...

... is the beginning of the GaN journey!