eGaN® FET DATASHEET EPC2901C_55

EPC2901C_55 – Enhancement Mode Power Transistor

 V_{DS} , 100 V $R_{DS(on)}$, 7 m Ω max I_D , 36 A 95% Pb/5% Sn Solder

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low $R_{DS(on)}$, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR} . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

	Maximum Ratings					
	PARAMETER VALUE UNIT					
\ \ \	Drain-to-Source Voltage (Continuous)	100	V			
V _{DS}	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)	120	V			
,	Continuous ($T_A = 25$ °C, $R_{\theta JA} = 7.3$)	36	Α			
I _D	Pulsed (25°C, T _{PULSE} = 300 μs)	150	A			
V _{GS}	Gate-to-Source Voltage	6	V			
	Gate-to-Source Voltage	-4	V			
TJ	Operating Temperature -40 to 150		°C			
T _{STG}	Storage Temperature	-55 to 150				

Thermal Characteristics					
PARAMETER TYP UNIT					
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	1			
R _{0JB} Thermal Resistance, Junction-to-Board		2	°C/W		
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1)	54			

Note 1: $R_{\theta JA}$ is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

00	N	nn	N	
0	UL		U	

EPC2901C_55 eGaN® FETs are supplied only in passivated die form with solder bars

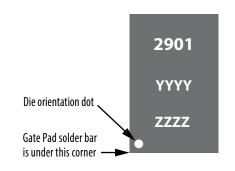
Applications

- High-Frequency DC-DC Conversion
- Industrial Automation
- Synchronous Rectification
- Low Inductance Motor Drives

Benefits

- Ultra High Efficiency
- Ultra Low Switching and Conduction Losses
- Zero Q_{RR}
- Ultra Small Footprint

Static Characteristics ($T_j = 25^{\circ}$ C unless otherwise stated)								
	PARAMETER TEST CONDITIONS MIN TYP MAX UNIT							
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, I}_{D} = 300 \mu\text{A}$	100			V		
	Durin Course Looks as	$V_{GS} = 0 \text{ V}, V_{DS} = 80 \text{ V}$		2	250	μΑ		
I _{DSS}	Drain-Source Leakage	$V_{GS} = 0 \text{ V}, V_{DS} = 80 \text{ V}, T_{J} = -55^{\circ}\text{C}$		0.9	50			
I _{GSS}	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$		0.019	2	mA		
		$V_{GS} = 5 \text{ V}, T_{J} = -55^{\circ}\text{C}$		0.01	1.5			
	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		1.4	250	μΑ		
		$V_{GS} = -4 \text{ V}, T_{J} = -55 ^{\circ}\text{C}$		0.14	50			
.,	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 5 \text{ mA}$	0.8	1.6	2.5	V		
$V_{GS(TH)}$		$V_{DS} = V_{GS}$, $I_D = 5$ mA, $T_J = -55$ °C		1.7	2.7			
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V, } I_D = 25 \text{ A}$		4.8	7			
		$V_{GS} = 5 \text{ V}, I_D = 25 \text{ A}, T_J = -55 ^{\circ}\text{C}$		3.1	6.5	mΩ		
V _{SD}	Source-to-Drain Forward Voltage#	$V_{GS} = 0 \text{ V, I}_{S} = 0.5 \text{ A}$		1.8		V		

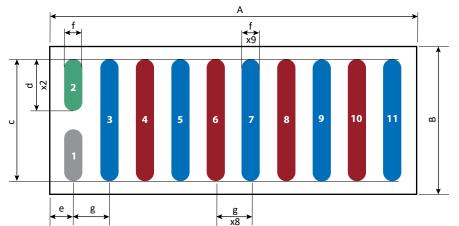

All measurements were done with substrate connected to source # Defined by design. Not subject to production test

EPC2901C_55 eGaN® FET DATASHEET

	Dynamic Characteristics $\#(T_j = 25^{\circ}\text{C unless otherwise stated})$						
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT	
C _{ISS}	Input Capacitance			756	1020		
C _{RSS}	Reverse Transfer Capacitance			9.25	13		
C _{OSS}	Output Capacitance	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$		493	650	pF	
C _{OSS(ER)}	Effective Output Capacitance, Energy Related			567			
C _{OSS(TR)}	Effective Output Capacitance, Time Related			711			
R_{G}	Gate Resistance			0.3		Ω	
Q _G	Total Gate Charge	$V_{DS} = 50 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 25 \text{ A}$		6.9	10		
Q _{GS}	Gate to Source Charge			1.9			
Q_{GD}	Gate to Drain Charge	$V_{DS} = 50 \text{ V, I}_{D} = 25 \text{ A}$		1.35	2		
Q _{G(TH)}	Gate Charge at Threshold			1.2		nC	
Q _{OSS}	Output Charge	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$		36	45		
Q _{RR}	Source-Drain Recovery Charge			0			

All measurements were done with substrate connected to source # Defined by design. Not subject to production test

DIE MARKINGS



Davis	Laser Markings				
Part Number	Part # Marking Line 1	Lot_Date Code Marking Line 2	Lot_Date Code Marking Line 3		
EPC2901C_55	2901	YYYY	ZZZZ		

eGaN® FET DATASHEET EPC2901C_55

DIE OUTLINE

Solder Bar View

DIM	MICROMETERS				
DIM	MIN	Nominal	MAX		
A	4075	4105	4135		
В	1605	1635	1665		
c	1362	1382	1402		
d	560	580	600		
е	235	250	265		
f	180	200	220		
g		400			

Pad no. 1 is Gate;

Pads no. 3, 5, 7, 9, 11 are Drain;

Pads no. 4, 6, 8, 10 are Source;

Pad no. 2 is Substrate.*

*Substrate pin should be connected to Source

Side View

Seating Plane

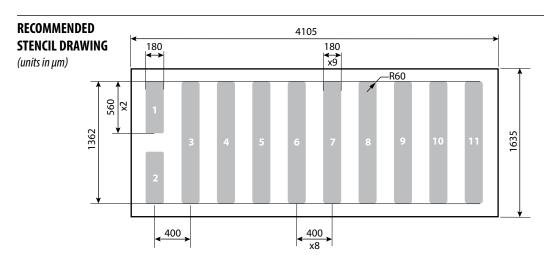
Seating Plane

Seating Plane

RECOMMENDED (units in μm) (un

х8

The land pattern is solder mask defined.


Pad no. 1 is Gate;

Pads no. 3, 5, 7, 9, 11 are Drain;

Pads no. 4, 6, 8, 10 are Source;

Pad no. 2 is Substrate.*

*Substrate pin should be connected to Source

Recommended stencil should be 4 mil (100 μ m) thick, must be laser cut , opening per drawing. The corner has a radius of R60.

Intended for use with SAC305 Type 3 solder, reference 88.5% metals content.

Additional assembly resources available at https://www.epc-co.com/epc/DesignSupport/ AssemblyBasics.aspx

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN* is a registered trademark of Efficient Power Conversion Corporation.

EPC Patent Listing: https://epc-co.com/epc/about-epc/patents

Information subject to change without notice.

Revised March 2024