

RFIC2014, Tampa Bay

June 1-3, 2014

WSC: GaN-based Power Supplies and Power Supply Modulators for Efficient Powering of RF PAs M.A. de Rooij, J.T. Strydom, S. Colino

International Microwave Symposium . IEEE 1-6 June 2014, Tampa Bay, FL MTT-S

- Background to eGaN FETs
- EPC8000 Series Parts

Agenda

- Envelope Tracking
- Experimental Results
- Limiting Factors
- Summary

Why Gallium Nitride?

eGaN FETs are LGA

Land Grid Array Solder bump under die

Flip Chip Assembly

Cross Section of an eGaN FET

Threshold vs. Temperature

eGaN[®] FETs vs. MOSFETs

Why Envelope Tracking?

Effect of PAPR

Effect of Envelope Tracking

11

RFPA Standards*

	Standard	Launched	Typ. Carrier BW (MHz)	Typ. Spectral Efficiency (bps/Hz)	Approx. PAPR(dB)	
2G cellular	GSM	1991	0.2	0.17	0.0	
2.75G cellular	GSM + EDGE	2003	02	0.33	3.5	
3G cellular	WCDMA FDD	2001	5	0.51	7.0	
Digital TV	DVB-T	1997	8	0.55	8.0	
Wi-Fi	IEEE 802.11a/g	2003	20	0.90	9.0	
WIMAX	IEEE 802.16d	2004	20	1.20	8.5	
Wi-Fi	IEEE 802.11n	2007	20	2.40	9.0	
3.5G cellular	HSDPA	2007	5	2.88	8.0	
3.9G cellular	LTE	2009	20	8.00	10.0	

- Up to 20 MHz Carrier bandwidth required
- Required ET supply BW about 5x higher than carrier BW

*Ref: www.open-et.org website

- ET power supply topologies vary
 - Open loop boost full BW required
 - Closed loop linear-assisted Buck*

*V. Yousefzadeh, et. Al, Efficiency optimization in linear-assisted switching power converters for envelope tracking in RF power amplifiers, ISCAS 2005

Initial Efficiency Results

14

Loss Breakdown

Lower Voltage ET Results*

*D. Čučak, et. al, "Application of eGaN FETs for highly efficient Radio Frequency Power Amplifier", CIPS 2012

Higher Frequency Lower Power Devices

- Improve Device Bandwidth
- Reduce device size
- Minimize Q_{GD} / HS-FOM
- Complete dv/dt immunity
- Minimize gate loop inductance
- Minimize power loop inductance
- Separate gate and power loops

Ultra High Frequency eGaN® FETs

	BV (V)	Max. R _{DS(ON)} (mΩ)	Min. Peak Id (A)	Typical Charge (<mark>pC</mark>)					Typical Capacitance (pF) (V _{DS} = 20 V; V _{GS} = 0 V)		
EPC Part No.		(V _{GS} = 5V,	(Pulsed, 25 °C,	Q _G	Q _{GD}	Q _{GS}	Q _{oss}	Q _{RR}			
		I _D = 0.5 A)	T _{pulse} = 300 μs)						C _{ISS}	Coss	C _{RSS}
EPC8004	40	125	7.5	358	31	110	493	0	45	17	0.4
EPC8007	40	160	6	302	25	97	406	0	39	14	0.3
EPC8008	40	325	2.9	177	12	67	211	0	25	8	0.2
EPC8009	65	138	7.5	380	36	116	769	0	47	17	0.4
EPC8005	65	275	3.8	218	18	77	414	0	29	9.7	0.2
EPC8002	65	530	2	141	9.4	59	244	0	21	5.9	0.1
EPC8003	100	300	5	315	34	110	1100	0	38	18	0.2
EPC8010	100	160	7.5	354	32	109	1509	0	47	18	0.2

2.05 mm x 0.85 mm

* Preliminary Data – Subject to Change without Notice

Small Signal Performance

Large Signal Performance

Die Size - Gate Charge

Hard Switching FOM

dv/dt Immunity

Low Parasitic Layout

ET Prototype Board

15 V_{IN} to 3.3 V_{OUT} , 10 MHz

20 V_{IN} at 4 A_{OUT}

File Vertical Timebase Trigger Display Cursors Measure Math Analysis Utilities Help

42 V_{IN} to 20 V_{OUT} , 10 MHz

42 V_{IN} at 1 A_{OUT}

File Vertical Timebase Trigger Display Cursors Measure Math Analysis Utilities Help

42 V_{IN} , 20 V_{OUT} , 10 MHz

Loss Investigation

No-load Switching

Parasitic Losses

RFIC 2014

Loss Breakdown

42 V_{IN} , 20 V_{OUT} , 10 MHz

eGaN FET Limited Efficiency

Point of Load Buck Converter

EPC9107 Efficiency Results

- EPC8000 eGaN FETs proven up to 10 MHz
- New devices enable higher switching frequencies
- Switching 42V, 40W at 10MHz at 89% possible
- Driver parasitics limit performance
 - Doubles light load losses
- Gate driver improvements will allow further increase in switching frequency

- EPC8000 eGaN FETs enable High Frequency Power modulation.
- Superior FoM of eGaN FETs allow higher efficiency at higher frequencies.
 - Applicable to 42 V and 28 V DC to DC converters.
 - Enables very low duty cycle conversion
- eGaN FETs reduce energy cost.

The end of the road for silicon.....

is the beginning of the eGaN FET journey!