

909 N Pacific Coast Highway, Suite 230, El Segundo, CA 90245

Notification Date:	December 23, 2019				
PCN Number:	PCN191201				
PCN Title:	Process Change				

Product Identification:

The following released to sales part numbers will be impacted by this change:

EPC	Part Number	
	EPC2021	

You are receiving this notice because our records indicated that you have purchased the impacted device in the past two years.

Description of Change:

As part of continuous improvement efforts, we have made process modifications to the manufacturing steps that have improved the process. There is no change to device pin-out. Impacted datasheet parameters are noted in the tables below. Please consult EPC for applications support if needed.

Maximum Ratings							
Parameter			Dec 2019 Datasheet	Units			
V _{DS}	Drain-to-Source Voltage (Continuous)	80	80	V			
V _{DS}	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)	96	96	V			
	Continuous ($T_A = 25^{\circ}C$)	90	90	А			
ID	Pulsed (25°C, T _{Pulse} = 300 μs)	420	390	А			
	Gate-to-Source Voltage	6	6	V			
V _{GS}	Gate-to-Source Voltage	-4	-4	V			
TJ	Operating Temperature	-40 to 150	-40 to 150	°C			
T _{STG}	Storage Temperature	-40 to 150	-40 to 150	°C			

Static Characteristics									
			Aug 20	19 Datashe	et	Dec	2019 Data	sheet	
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 V, I_{D} = 500 \mu A$	80			80			V
I _{DSS}	Drain Source Leakage	V _{DS} = 64 V, V _{GS} = 0 V		100	700		20	200	μA
	Gate-to-Source Forward Leakage	V _{GS} = 5 V, T _J = 25 °C		1	9		0.02	4	mA
I _{GSS}	Gate-to-Source Forward Leakage#	V _{GS} = 5 V, T _J = 125 °C		N/A	N/A		0.1	9	mA
	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		100	700		20	200	μΑ
V _{GS(TH)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 13 \text{ mA}$	0.8	1.4	2.5	0.7	1.2	2.5	V
R _{DS(ON)}	Drain-Source On Resistance	V _{GS} = 5 V, I _D = 29 A		1.8	2.5		1.8	2.2	mΩ
V _{SD}	Source-Drain Forward Voltage	I _S = 0.5 A, V _{GS} = 0 V		1.6			1.5		V
All measuremen	ts were done with substrate connected to s	ource.							
# Defined by des	sign. Not subject to production test.								

Product / Process Change Notification (PCN)

909 N Pacific Coast Highway, Suite 230, El Segundo, CA 90245									
	Dynamic Characteristics								
Aug			Aug 20	g 2019 Datasheet		Dec 2019 Datasheet		sheet	
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
CISS	Input Capacitance [#]	V _{DS} = 40 V, V _{GS} = 0 V		1650	1980		1610	1940	
C _{RSS}	Reverse Transfer Capacitance			20			15		
C _{OSS}	Output Capacitance [#]			970	1460		1100	1650	
C _{OSS(ER)}	Effective Output Capacitance, Enegy Related (Note 2)	V_{DS} = 0 to 40 V, V_{GS} = 0 V		1090			1450		pF
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 3)			1310			1790		
R _G	Gate Resistance			0.3			0.3		Ω
Q _G	Total Gate Charge [#]	V _{DS} = 40 V, V _{GS} = 5 V, I _D = 29 A		15	19		15	19	
Q _{GS}	Gate to Source Charge			3.4			4.1		1
Q _{GD}	Gate to Drain Charge	V _{DS} = 40 V, I _D = 29 A		2.3			3		
Q _{G(TH)}	Gate Charge at Threshold			2.5			2.7		nC
Q _{oss}	Output Charge [#]	V _{DS} = 40 V, V _{GS} = 0 V		63	95		72	108	1
Q _{RR}	Source-Drain Recovery Charge			0			0		1
All measurement	ts were done with substrate connected to	source.							
# Defined by design. Not subject to production test.									
Note 2: C _{OSS(ER)} is	a fixed capacitance that gives the same st	pred energy as C_{OSS} while V_{DS} is rising from 0 t	o 50% BV _{DSS} .						
Note 3. Communis	a fixed capacitance that gives the same ch	arging time as Case while Vas is rising from 0 t	o 50% BV						

This change will be in effect for devices shipping with date code of 10D1918 (work week 18, year 2019) or later.

Last Time Buy:

Contact EPC

Samples

Contact EPC

Information Request

If there are any questions, comments or information required regarding this PCN please contact your local EPC Sales Representative or the following EPC contacts directly.

EPC Sales Contact:	Renee Yawger	+1.908.475.5702	(renee.yawger@epc-co.com)
EPC Engineering Contact:	Bhasy Nair	+1.972.805.8585	(bhasy.nair@epc-co.com)

EPC CONSIDERS THIS CHANGE APPROVED IF WE DO NOT RECEIVE ANY WRITTEN OBJECTION WITHIN 30 DAYS FROM NOTIFICATION DATE OF THIS PCN LETTER.

909 N Pacific Coast Highway, Suite 230, El Segundo, CA 90245

EPC Approval:

This PCN has been reviewed and approved by EPC's Quality & Reliability department:

Quality Director: Yanping Ma

Date:

____12/23/2019____