* (C) Copyright Efficient Power Conversion Corporation. All rights reserved. ***************************************************************************** * Version History: * 1.00: 09/25/2018 - Initial Model Creation * 1.01: 02/19/2019 - Updated the Capacitance Model .subckt EPC2203 gatein drainin sourcein .param aWg=115 A1=3.7225 k2=2.4725 k3=0.15 rpara=0.045856 rpara_s_factor=0.23 + aITc=0.00414 arTc=-0.0069 k2Tc=0.0008 x0_0=1.5764 x0_1=-0.1 x0_0_TC=-0.0025 x0_1_TC=0 + dgs1=4.3e-07 dgs2=2.6e-13 dgs3=0.8 dgs4=0.23 + ags1=7.1874e-11 ags2=4.3702e-11 ags3=1.8083 ags4=0.23132 + ags5=-2.2481e-11 ags6=10.762 ags7=1.2289 + agd1=3.9208e-15 agd2=1.4276e-12 agd3=-3.7081 agd4=34.585 + agd5=8.7701e-12 agd6=-9.4657 agd7=2.5229 + agd8=2.0154e-13 agd9=-353.48 agd10=15.057 + asd1=3.9053e-11 asd2=5.3294e-11 asd3=-0.6675 asd4=26.865 + asd5=4.8374e-11 asd6=-15.156 asd7=1.4717 rg_value=0.4 rd drainin drain {((1-rpara_s_factor)*rpara*(1-arTc*(Temp-25)))} rs sourcein source {(rpara_s_factor*rpara*(1-arTc*(Temp-25)))} rg gatein gate {(rg_value)} *Large resistors to aid convergence Rcsdconv drain source {100000Meg/aWg} Rcgsconv gate source {100000Meg/aWg} Rcgdconv gate drain {100000Meg/aWg} gswitch drain source Value {if(v(drain,source)>0, + (A1*(1-aITc*(Temp-25))*log(1.0+exp((v(gate,source)-(k2*(1-k2Tc*(Temp-25))))/k3))* + v(drain,source)/(1 + (x0_0*(1-x0_0_TC*(Temp-25))+x0_1*(1-x0_1_TC*(Temp-25))*v(gate,source))*v(drain,source)) ), + (-A1*(1-aITc*(Temp-25))*log(1.0+exp((v(gate,drain)-(k2*(1-k2Tc*(Temp-25))))/k3))* + v(source,drain)/(1 + (x0_0*(1-x0_0_TC*(Temp-25))+x0_1*(1-x0_1_TC*(Temp-25))*v(gate,drain))*v(source,drain)) ) )} ggsdiode gate source VALUE {if( v(gate,source) < 10, + 0.125*aWg/1077*(dgs1*(exp((v(gate,source))/dgs3)-1)+dgs2*(exp((v(gate,source))/dgs4)-1)), + 0.125*aWg/1077*(dgs1*(exp((10)/dgs3)-1)+dgs2*(exp((10)/dgs4)-1)) ) } ggddiode gate drain Value {if( v(gate,drain) < 10, + 0.125*aWg/1077*(dgs1*(exp((v(gate,drain))/dgs3)-1)+dgs2*(exp((v(gate,drain))/dgs4)-1)), + 0.125*aWg/1077*(dgs1*(exp((10)/dgs3)-1)+dgs2*(exp((10)/dgs4)-1)) ) } *Model for voltage dependent gate-source capacitance E_GS tl_gs bl_gs gate source 1.0 V_INGS 0 bl_gs 0V C_IGS tl_gs 0 1.0E-6 G_GS gate source VALUE = {1E6*I(V_INGS)* + (ags1 + 0.5*ags2/(1.0 + exp( (v(gate,source)-ags3)/ags4 ))*exp( (v(gate,source)-ags3)/ags4 ) + + ags5/(1.0 + exp((v(source,drain)-ags6)/ags7))*exp((v(source,drain)-ags6)/ags7))} *Model for voltage dependent gate-drain capacitance E_GD tl_gd bl_gd gate drain 1.0 V_INGD 0 bl_gd 0V C_IGD tl_gd 0 1.0E-6 G_GD gate drain VALUE = {1E6*I(V_INGD)*(agd1 + 0.5*ags2/(1.0 + exp((v(gate,drain)-ags3)/ags4))*exp((v(gate,drain)-ags3)/ags4) + + agd2/(1.0 + exp((v(gate,drain)-agd3)/agd4))*exp((v(gate,drain)-agd3)/agd4) + + agd5/(1.0 + exp((v(gate,drain)-agd6)/agd7))*exp((v(gate,drain)-agd6)/agd7) + + agd8/(1.0 + exp((v(gate,drain)-agd9)/agd10))*exp((v(gate,drain)-agd9)/agd10))} *Model for voltage dependent source-drain capacitance E_SD tl_ds bl_ds source drain 1.0 V_INSD 0 bl_ds 0V C_ISD tl_ds 0 1.0E-6 G_SD source drain VALUE = {1E6*I(V_INSD)*(asd1 + asd2/(1 + exp((v(source,drain)-asd3)/asd4))*exp((v(source,drain)-asd3)/asd4) + + asd5/(1 + exp((v(source,drain)-asd6)/asd7))*exp((v(source,drain)-asd6)/asd7))} .ends