GaNの話シリコンを粉砕するために捧げたブログ
Term: データーセンター
8 post(s) found

1 07, 2022

eGaN FETと、ルネサス エレクトロニクスのコントローラISL81807を使った12V入力、48 V / 500 W出力の2相ブースト・コンバータの設計、シリコンと同じBOM(部品表)点数で、いかに優れた効率と電力密度を実現するか

Jianglin Zhu, Senior Applications Engineer

48 Vは、AI(人工知能)システム、データセンター、マイルドハイブリッド電気自動車など、多くのアプリケーションで採用されています。ただし、従来の12 Vのエコシステムが依然として支配的であるため、12 Vから48 Vへの高電力密度のブースト(昇圧型)・コンバータが必要です。eGaN® FETの高速スイッチングと低オン抵抗RDS(on) は、この課題に対処することに役立ちます。このブログでは、ルネサス エレクトロニクスのeGaN FET互換コントローラIC のISL81807によって直接駆動されるeGaN FETを使った12 V入力、48 V、500 W出力のDC-DCパワー・モジュールの設計をシンプルで低コストの同期ブースト構成の中で評価します。.

11 03, 2020

200 VのeGaN® FETを使って、高効率、2.5 kW、汎用入力電圧範囲、力率補正(PFC)の400 Vの整流器を設計する方法

Alex Lidow, Ph.D., CEO and Co-founder

謝辞:このアプリケーション・ノートと関連ハードウエアは、米テキサス大学オースティン校のSemiconductor Power Electronics Center(SPEC)と共同で開発されました。

動機

クラウド・コンピューティング、ウエアラブル、機械学習、自動運転、すべてのモノがインターネットにつながるIoTなどのアプリケーションの拡大によって、データ集約型の世界へと私たちを駆り立て、データセンターと電力消費に対する需要が増大しています [1,2]。交流から直流へのスイッチング電源の効率、電力密度、コストの重要性は、eGaN FETが超高効率力率補正(PFC)のフロントエンド整流器ソリューションを可能にして解決できる革新的なソリューションを牽引し、これに焦点を当てたアプリケーション・ノートHow2AppNoteもあります。

4 24, 2019

最新世代の100 VのeGaN FETを使って、最も小型で、最も費用対効果が高く、最も効率が高い48 V入力、5~12 V出力の非絶縁型DC-DCコンバータを構築

Rick Pierson, Senior Manager, Digital Marketing

新たに出現したコンピューティング・アプリケーションは、はるかに小型でより多くの電力を必要とします。サーバー市場のニーズの拡大に加えて、最も困難なアプリケーションには、マルチユーザー・ゲーム・システム、自動運転車、人工知能などがあります。これらの用途は、プロセッサに近接したマザー・ボード上に詰め込めるDC−DCコンバータに対する需要を生み出しています。

4 03, 2019

eGaN FETを使った48 V入力、12 V出力の900 W小型LLC共振コンバータで98%以上の効率を得る

Rick Pierson, Senior Manager, Digital Marketing

コンピュータや電気通信の市場の急速な拡大によって、中間バス・コンバータ向けに、これまで以上に小型、高効率、高電力密度のソリューションが求められています。LLC共振コンバータは、高電力密度と高効率のソリューションを提供するための優れた候補です。非常に小さい低オン抵抗と寄生容量を備えたeGaN® FETsは、Si MOSFETを使うときに困難だった大幅な損失低減によってLLC共振コンバータに貢献します。EPC2053やEPC2024などのeGaN FETを採用した48 V入力、12 V出力の900 W、1 MHz動作の LLC DC-DCトランス(DCX)・コンバータがデモされ、電力密度1500 W / 立方インチ以上でピーク効率98.4%が得られています。

4 11, 2017

Four Ways GaN Technology Helps Save the Planet

Alex Lidow, Ph.D., CEO and Co-founder

Gallium nitride (GaN) is a better semiconductor than silicon. There are many crystals that are better than silicon, but the problem has always been that they are far too expensive to be used in every application where silicon is used. But, GaN can be grown as an inexpensive thin layer on top of a standard silicon wafer enabling devices that are faster, smaller, more efficient, and less costly than their aging silicon counterparts.

11 11, 2016

2017年の私の予測

Alex Lidow, Ph.D., CEO and Co-founder

2016年1月、私は、そのとき、来る年のいくつかの予測をしました。無線充電、拡張現実、自動運転車、医療診断やインターネット・アクセスの進歩など、新しい市場に対する予測をしました。これらの市場における進歩は、すべての面で、予想よりも、時にはより速く、時にはより遅くなりました。そして、ここで、私たちは、まさに新しい年を迎えようとしており、おそらく、愚かなことに、私は、再び未来を予測しようと思います。

10 13, 2016

Forget Everything You Thought You Knew About Semiconductors

Alex Lidow, Ph.D., CEO and Co-founder

In past postings , we looked at the applications that have emerged because of new capabilities available with #GaN technology. We also discussed the transformational nature of some of these applications in areas like medicine, telecommunications,human-machine interfaces, and the delivery of electrical power itself (wireless power transfer). GaN technology is entering an era similar to the 80’s and 90’s when the utility of technological improvement was apparent across broad commercial markets. Consequentially, consumers will be willing to pay a premium for the life-style improvements enabled by these improvements thereby accelerating growth of GaN applications for the foreseeable future.

7 26, 2016

Rethinking Server Power Architecture in a Post-Silicon World: Getting from 48 Vin – 1 Vout Directly

David Reusch, Ph.D., Principal Scientist, VPT

The demand by our society for information is growing at an unprecedented rate. With emerging technologies, such as cloud computing and the internet of things (IoT), this trend for more and faster access to information is showing no signs of slowing. What makes the transfer of information at high rates of speed possible are racks and racks of servers, mostly located in centralized data centers.