應用筆記

宜普電源轉換公司(EPC)提供技術資源包括應用筆記及白皮書,以支援客戶設計及評估基於氮化鎵(GaN)元件的各種產品及解決方案。

採用增强型矽基氮化鎵功率場效應電晶體eGaN FET

使用氮化鎵場效應電晶體(eGaN FET)與使用先進功率MOSFET是非常相似的。但是,由於氮化鎵元件具備明顯更高的性能,因此我們需要考慮額外的設計和測試因素,從而確保元件可以高效及可靠地工作。

組裝eGaN FET

EPC公司的eGaN FET和積體電路採用非常不一樣的封裝方法 -- 我們摒棄了功率半導體的封裝並採用創新的晶圓級、晶片規模封裝,從而實現具備高功率密度的最先進器件。

準確測量具備高速開關性能的氮化鎵電晶體

T由於氮化鎵電晶體具備快速的開關速度,因此需要良好的測量技術及方法,以測量出高速波形圖中重要的、詳細的資料。本應用筆記主要描述如何針對使用者的要求及測量技術,利用測量設備準確地評估高效氮化鎵電晶體的性能。

並聯高速氮化鎵電晶體

本應用筆記主要描述在需要更大輸出電流的應用中如何並聯高速氮化鎵電晶體,並且討論電路中的寄生電感如何影響元件的性能,以及建議PCB的佈局方法,從而提高並聯高速氮化鎵電晶體的性能。

利用DrGaNPLUS简化您的设计

功率轉換器設計師可以利用氮化鎵基電晶體及積體電路實現更高的輸出功率、更高的效率及更高的功率密度。本應用筆記描述功率轉換系統設計師如何利用eGaN FET模組,容易地對具備卓越性能的氮化鎵電晶體進行評估。

eGaN FET的散熱性能

我們十分明白傳統的矽基MOSFET的散熱性能,但測量氮化鎵場效應電晶體(eGaN FET)的散熱性能則需要進一步的解釋。本應用筆記探究eGaN FET的測試方法及其熱阻的測量結果。

氮化鎵場效應電晶體(eGaN FET)的安全操作區

溫度限制功率電晶體的性能。計算元件的溫度假設元件的有緣區域在平均功耗下運行,但這不一定是正確的。本應用筆記描述功率氮化鎵電晶體的安全工作區(SOA)展示出很好的SOA特性之同時可以保持最低的阻抗,以及比較計算所得的元件溫度和測量所得的結果。

利用元件模型構建模擬電路

一個準確的電路及元件模型是一個很有用的工具,可以開發出全新拓撲、構建各種成功的設計及縮短產品上市時間。本筆記描述EPC的各種元件模型,以及把EPC eGaN 元件放進電路模型時所需考慮的一些重要因素。

參數特徵指南

EPC氮化鎵電晶體的一般操作原理就像N通道功率MOSFET一樣。可以利用N通道功率MOSFET所使用的參數曲線追蹤儀(curve tracer)、、參數分析儀及離散式元件參數自動測試儀來描述氮化鎵電晶體的特性。本應用筆記指導使用Tektronix 576 curve tracer、Keithley 238參數分析儀及TESEC 881-TT/A 離散式元件測試系統,描述DC半導體參數特性。

直觀特性指南

本應用筆記詳細描述EPC的增強型電晶體及積體電路的物理特性,包括付運給客戶前,器件必需符合的直觀特性。

優化死區時間以實現最高效率

本白皮書討論優化晶片尺寸的方法,從而選取eGaN FET的最優阻抗,並利用應用例子展示結果。由於“最優”對不同的人來說是大不相同的,因此,這個工藝是針對在既定的負載條件下,元件如何實現最高開關效率。

選擇氮化鎵場效應電晶體的最優導通電阻

本白皮書討論優化晶片尺寸的方法,從而選取eGaN FET的最優阻抗,並利用應用例子展示結果。由於“最優”對不同的人來說是大不相同的,因此,這個工藝是針對在既定的負載條件下,元件如何實現最高開關效率。

採用氮化鎵場效應電晶體優化PCB的佈局

本白皮書針對基於eGaN FET的POL降壓轉換器,探討最優化的PCB佈局、與傳統設計比較及建議一個可以進一步降低寄生電感的全新最優化佈局。

寄生電感對基於eGaN FET及MOSFET的負載點降壓轉換器性能的影響

由於eGaN FET改善開關FOM,要實現高性能,封裝及PCB佈局的寄生電感非常重要。本白皮書研究在開關頻率為1 MHz、輸入電壓為12 V、輸出電壓為1.2 V及輸出電流高達20 A的條件下,寄生電感對基於eGaN FET及MOSFET的負載點(POL)降壓轉換器性能的影響.

eGaN FET驅動器及佈局所需考慮的因素

eGaN FET與矽元件不同的是,由於eGaN FET具備快很多的開關速度,因此他們對閘極驅動器、佈局及熱管理的要求不一樣,而這些方面都可以互動。

eGaN FET 電學特性

本白皮書闡釋eGaN FET的基本電學特性並與矽基MOSFET作出比較。我們必需明白這兩種技術的同異,從而瞭解可否大幅度提升目前的功率轉換系統的性能。

於電源轉換領域,第5代電晶體的性能提升實現質的飛躍

Efficient Power Conversion Corporation (EPC), the world’s leader in enhancement mode gallium nitride on silicon (eGaN) power FETs and ICs has developed a next generation of eGaN technology that makes it possible to cut the size of our products in half, while giving the power system designer access to significantly higher performance. This is EPC’s fifth generation (Gen 5) GaN technology and it is further evidence that GaN-on-silicon is a rapidly improving technology that is already more than 10 X higher performance than silicon MOSFETs while costing less to produce.

eGaN FETs Deliver the Performance of GaN at the Price of Silicon

Power transistors made using gallium nitride (GaN) instead of silicon have been in production for several years. A new line of eGaN FETs is now available that are not only much faster and smaller than power MOSFETs with similar on-resistance and voltage ratings, but these new transistors are priced favorably at comparable volumes. This is the first time in 60 years that there has been a non-silicon technology that has both superior performance and price compared with their silicon-based counterpart.

氮化鎵整合式元件實現更高直流-直流轉換效率及功率密度

除了性能及成本得以改善外,氮化鎵技術最大的機遇是它的固有特性可整合多個元件於相同的基板上,從而對功率轉換市場的影響深遠。與常用的矽積體電路技術相反,氮化鎵技術將來可讓設計師更直接地及以低成本在單一晶片上實現單片式功率系統。

Fourth Generation eGaN FETs Widen the Performance Gap with the Aging MOSFET

Fourth generation of GaN-on-silicon enhancement mode transistors (eGaN FETs) sets new performance records. This family of products range from 30 V to 200 V and significantly widen the performance gap between the aging power MOSFET and gallium nitride-based transistors.

Introducing a Family of eGaN FETs for Multi-Megahertz Hard Switching Applications

In this application note we present the new EPC8000 series devices and highlight some of the key features that make this transistor family suitable for high frequency applications. That will be followed by two application examples, a 10 MHz envelope tracking converter and a 6.78 MHz class D wireless power transfer system. In conclusion, small signal RF characteristics will also be provided.

氮化鎵功率電晶體的基礎

The basic requirements for power semiconductors are effciency, reliability, controllability, and cost effectiveness. High frequency capability adds further value in size and transient response in regulators, and fidelity in class D amplifiers. Without effciency and reliability, a new device structure would have no chance of economic viability.

矽功率MOSFET在電源轉換領域的發 展已經走到盡頭了嗎?

For the past three decades, power management efficiency and cost have shown steady improvement as innovations in power MOSFET structures, technology, and circuit topologies have paced the growing need for electrical power in our daily lives. In the last few years, however, the rate of improvement has slowed as the silicon power MOSFET has asymptotically approached its theoretical bounds. Now the superior performance of gallium nitride technology is displacing the power MOSFET.

於48 V – 12 V 功率轉換採用eGaN® FET的優勢

本應用筆記展示出基於eGaN FET的非隔離型、已調節型的48 V – 12 V中間匯流排轉換器的優化系統可以實現更高的功率密度及效率。此外,與傳統的矽基解決方案相比,我們探討基於eGaN FET的多級拓撲可進一步發揮eGaN FET的優勢。

面向低成本的共振無線充電應用的 eGaN FET

Resonant wireless power systems use loosely-coupled, highly-resonant coils that are tuned to high frequencies (6.78 MHz or 13.56 MHz). The AirFuel Alliance has developed the standard for resonant wireless power applications. They address convenience-of-use issues such as source to device distance, device orientation on the source, multiple devices on a single source, higher power capability, simplicity of use, and imperfect placement.

在波峰追蹤的應用採用氮化鎵`場效應電晶體

Gallium nitride transistors can be used to improve the efficiency of DC-DC conversion. In this white paper we look at a new application that is being enabled by gallium nitride technology that has been difficult to implement using traditional silicon MOSFET power devices.

支持光伏(PV)逆變器應用的氮化鎵場效應電晶體

Photo-Voltaic (PV) inverter size and cost are dominated by thermal management and passive elements used for bulk energy storage and filtering. Using eGaN FETs to increase efficiency and/or increase switching frequency will reduce the size and cost of the system.

氮化鎵場效應電晶體的小信號射頻性能

Even though the eGaN FET was designed and optimized as a power-switching device, it also exhibits good RF characteristics. EPC’s small 200 V eGaN FET was selected for RF evaluation and should be viewed as a starting point from which the RF characteristics of future eGaN FET part numbers can be optimized for even better RF performance at higher frequencies.

在高頻諧振轉換器的應用採用氮化鎵`場效應電晶體

In this white paper eGaN FET technology is applied in a high frequency resonant converter. Previously, the advantages provided by eGaN FETs in hard switching isolated and non-isolated applications were addressed. This paper will demonstrate the ability of the eGaN FET to improve efficiency and output power density in a soft switching application, as compared to what is achievable with existing power MOSFET devices.

使用氮化鎵場效應電晶體改善直流-直流正激式轉換器的效率

DC-DC converter designers can achieve higher power density at lower power levels by using forward converters with synchronous rectification and gallium nitride transistors. One very typical application is a 26 W, 48 V to 5 V , Power over Ethernet Powered Device (PoE-PD).

使用氮化鎵場效應電晶體改善直流-直流反激式轉換器的效率

DC-DC converter designers can achieve low cost at low power densities by using flyback converters and enhancement mode gallium nitride transistors. To evaluate the performance of eGaN FETs in a flyback converter, two different converter designs were created and compared to MOSFET equivalent versions of the same design.

採用基於氮化鎵場效應電晶體的降壓轉換器樹立直流-直流轉換效率的基準

Improvements in buck converters over the past few years have been limited by the power MOSFET’s sedate switching speeds which, in this “hard-switched” topology, translates into lower power conversion frequencies (size and cost), lower efficiency (size and cost), and lower VIN/VOUT ratios (less efficient power management systems). In this paper we show that eGaN FETs unlock a new spectrum of performance that can be translated into significant power conversion system cost and performance improvements.

How to Get More Power Out of a High-Density eGaN-Based Converter with a Heatsink

eGaN FETs and ICs enable very high-density power converter design, owing to their compact size, ultra-fast switching, and low on-resistance. The limiting factor for output power in most high-density converters is junction temperature, which prompts the need for more effective thermal design. The chip-scale packaging of eGaN also offers six-sided cooling, with effective heat extraction from the bottom, top, and sides of the die. This application note presents a high-performance thermal solution to extend the output current capability of eGaN-based converters.

Exceeding 98% Efficiency in a Compact 48 V to 12 V, 900 W LLC Resonant Converter Using eGaN FETs

The rapid expansion of the computing and telecommunication market is demanding an ever more compact, efficient and high power density solution for intermediate bus converters. The LLC resonant converter is a remarkable candidate to provide a high power density and high efficiency solution. eGaN FETs with their ultra-low on-resistance and parasitic capacitances, benefit LLC resonant converters by significant loss reduction that is challenging when using Si MOSFETs.

Achieving Best-in-class 48 V to 12 V, 60 A DC-DC Converter Performance with the EPC9130 Multiphase Buck

Single-phase buck converter can work efficiently at output currents up to 25 A, but the power efficiency drops significantly at higher currents. A compact, cost effective, high-power and high-efficiency 48 V to 12 V buck converter, suitable for high-power computing and telecommunication applications, can be achieved by employing eGaN FETs such as EPC2045 in a multiphase topology.

採用EPC2053氮化鎵元件提高48 V轉到5-12 V的DC/DC轉換器 的功率密度、可提供高達25 A的輸出電流

採用氮化鎵場效應電晶體(eGaN FET),例如EPC2053,可實現最微型、最具成本效益、最高效及可提供25 A的輸出電流的非隔離型48 V轉到5-12 V 轉換器,適用於高效運算及電信應用。EPC9093開發板被配置為同步降壓轉換器,主要功率級的佔板面積只是10毫米x9毫米,與等效矽元件相比,其體積最少縮小了兩倍,而且輸出電壓可在5 V至12 V範圍內。

How to Design an eGaN FET-Based Power Stage with an Optimal Layout

eGaN FETs are capable of switching much faster than Si MOSFETs, requiring more careful consideration of PCB layout design to minimize parasitic inductances. Parasitic inductances cause higher overshoot voltages and slower switching transitions. This application note reviews the key steps to design an optimal power stage layout with eGaN FETs, to avoid these unwanted effects and maximize the converter performance.

Building the Smallest and Most Efficient 48 V to 5 - 12 V DC to DC Converter using EPC2045 and ICs

The smallest, most cost effective and highest efficiency non-isolated 48 V to 12 V converter, suitable for high-performance computing and telecommunication applications, can be achieved by employing eGaN® FETs such as the EPC2045. The EPC9205 configured as a synchronous Buck converter yielded a power density of 1400 W/in3 and is capable of delivering 15 A.

如何構建一個可以看得更遠、更清晰、成本更低的超快速及高功率雷射驅動器!

雷射雷達/光達(LiDAR)是一種遠距感測技術,從感測器發射光脈衝,並記錄反射光線的時間,從而映射物件的位置及距離。氮化鎵場效應電晶體具備超高性能,而且它採用晶片級封裝,因此具有超低電感,使得它們成為脈衝雷射驅動電路最理想的開關元件。

Designing PCB Footprint for EPC eGaN FETs and ICs

EPC’s wafer level chip-scale packaging such as the Land Grid Array (LGA) and Ball Grid Array (BGA) packages shown in figure 1, has enabled a new level of performance in power conversion. Many of these parts use a fine pitch down to 400 μm which means a proper PCB footprint design is essential for consistent and reliable assembly of the GaN device. Here are the guidelines of designing a correct footprint for any EPC part working from the datasheet.

如何手工組裝氮化鎵場效應電晶體或積體電路

EPC公司的創新封裝-晶片級、基板柵格陣列(LGA)及球柵陣列(BGA)封裝(如圖1所示)推動功率轉換實現更高的性能。要發揮氮化鎵技術的高效性能,必需使用合適的組裝技術。以下是如何手工組裝這些場效應電晶體或積體電路的指南。

採用EPC2111氮化鎵元件構建低成本、高效的12 V–1 V負載點(POL)轉換器

採用單片半橋式eGaN積體電路(例如EPC2111)可以實現最微型、最具成本效益及最高效率的非隔離型12 V–1 V負載點轉換器,適用於高效運算、比特幣挖礦及電訊等應用。EPC9204被配置為同步降壓轉換器,功率密度可達1000 W//in3 及可發送12安培電流。

針對eGaN®FET功率轉換的生態系統的持續發展和完善

與等效矽基方案相比,由於基於氮化鎵場效應電晶體(eGaN FET)的功率轉換系統可實現更高的效率、更高的功率密度和更低的整體系統成本,它使得功率電子元件的生態系統日益增長,包括可提升eGaN FET性能的閘極驅動器、控制器和無源元件。

如何於應用中高效地測量出氮化鎵場效應電晶體(eGaN® FET)的性能

隨著基於eGaN FET的轉換器的電路性能不斷提高,對電路性能的測量的要求也在提升。 本文比較各種測量技術及對應用中的高性能氮化鎵場效應電晶體的性能進行評估。

Data center power applications
LiDAR applications
Wireless power applications
Envelope tracking applications
Space applications
Class D Audio applications
Medtech applications
Motor drive applications
Power inverter applications