

EPC2106 Thermal Simulations $R_{\Theta JB} \& R_{\Theta JC}$

EPC - The Leader in GaN Technology

EPC2106 1:1 Half Bridge Thermal Simulation

- Standard 5 layer thermal model used on other parts
- EPC2106 1:1 HB geometry
- Treat each FET Q1 and Q2 as separate, and calculate thermal coupling matrix
- R_{OJB} and R_{OJC} Steady state and transient simulations
 - Transient provide R-C network for thermal model

Results Summary

R_{OJB}: 2 FET Model

2 simulations

- All power dissipation in Q2 FET
- All power dissipation in Q1 FET

Use results to obtain 2x2 R_{OJB} matrix

$$\begin{pmatrix} \Delta T_{Q1} \\ \Delta T_{Q2} \end{pmatrix} = \begin{bmatrix} 30.4 & 28.6 \\ 28.6 & 30.9 \end{bmatrix} \cdot \begin{pmatrix} P_{Q1} \\ P_{Q2} \end{pmatrix}$$

R_{OJC} = 3.12 C/W (using max temperature rise in junction)

R_{AJC}

- 1 W total is dissipated in the entire halfbridge, with the same power density in the active areas of both Q1 and Q2 FETs
- Top of bumps are thermally floating, backside of silicon substrate set to 300 K

Junction Temperature under 1W Internal Dissipation

Min: 302.041

Transient simulations conducted for both $R_{\Theta JB}$ and $R_{\Theta JC}$ modes In both cases, 1 W total is dissipated in the device, with the same volume power density in both FETs

The end of the road for silicon.....

is the beginning of the eGaN FET journey!

