EPC Technical Articles

Go-ahead for GaN

It’s getting harder to avoid using GaN power transistors and ICs, says Alex Lidow. There are many reasons to use GaN-on-Si power transistors such as eGaN FETs, in telecoms, vehicles, healthcare and computing. Smaller, faster, lower cost, and more integrated, GaN-on-Si devices have spent a decade gaining the confidence and trust of designers across the spectrum of power conversion applications.

Electronic Specifier
November 20, 2019
Read article

Qualifying and Quantifying GaN Devices for Power Applications

It’s okay to start using gallium-nitride (GaN) devices in your new designs. GaN transistors have become extremely popular in recent years. These wide-bandgap devices have been replacing LDMOS transistors in many power applications. For example, GaN devices are broadly being adopted for new RF power amplifiers used in cellular base stations, radar, satellites, and other high-frequency applications. In general, their ability to endure higher voltages and operate at frequencies well into the millimeter-wave (mmWave) range have them replacing traditional RF power transistors in most amplifier configurations.

Electronic Design
November, 2019
Read article

Why go for GaN?

GaN technology has matured to a point where it can challenge traditional silicon technology.  Gallium nitride(GaN)-on-silicon low voltage power devices have enabled many new applications since commercial availability began in 2010. New markets, such as light detection and ranging (LiDAR), envelope tracking, and wireless power, emerged due to the superior switching speed of GaN. These new applications have helped develop a strong supply chain, low production costs, and an enviable reliability record. All of this provides adequate incentive for the more conservative design engineers in applications, such as DC/DC converters, AC/DC converters, and automotive to start their evaluation process. In this article, the factors leading to the rapid acceleration of the adoption rate are explored.

Electronics Weekly
January 2019
Read article

Connected Vehicles Will Make Their Connections Through Gallium Nitride

With the rise of autonomous cars and electric propulsion as driving forces in automotive applications, a huge new market for power devices based on gallium nitride grown on a silicon substrate (GaN-on-Si) is emerging.

Design World
Read article

The Power and Evolution of GaN

Gallium nitride(GaN)-on-silicon low voltage power devices have enabled many new applications since commercial availability began in 2010. New markets, such as light detection and ranging (LiDAR), envelope tracking, and wireless power, emerged due to the superior switching speed of GaN. These new applications have helped develop a strong supply chain, low production costs, and an enviable reliability record. All of this provides adequate incentive for the more conservative design engineers in applications, such as dc–dc converters, ac–dc converters, and automotive to start their evaluation process. In this series, a few of the many, high volume applications taking advantage of GaN to achieve new levels of end-product differentiation will be discussed. First, it is useful to explore the factors attributing to the rapid acceleration of the adoption rate.

Power Systems Design
Read article

The Race to Cut the Power Cord is Already Happening

The year is 2022. You sit down at your office desk, back from Ikea with your new lamp. You take it out of the box, place it on the table, and it illuminates the workspace immediately. You then take your MacBook out of your backpack, place it to the right of the lamp, and it starts charging instantly. It sounds unreasonable to think that all this could become reality in just a few years. But behind closed doors, this technology already exists.

“A couple of months ago, we demonstrated an entire table top where everything on it was powered wirelessly,” Alex Lidow, CEO of EPC, tells Inverse. “A lamp, computer monitor, computer, cell phones being charged… all sorts of stuff.”

Inverse Innovation
August, 2017
Read article

Why a world without power cords is now within reach

Since Nikola Tesla first experimented with wireless power during the early 1900s, there has been a quest to “cut the cord” – and go wireless. Today’s applications for wireless power undoubtedly extend far beyond Tesla’s wildest imagination, as we now have the ability to wirelessly charge cell phones, power tools, and even buses while at their scheduled stops, not to mention airborne drones while flying. However, despite strong consumer and business demand for wireless charging, power cords still reign. What explains the lag in our ability to power all of our electronic devices and appliances wirelessly?

ITProPortal
August 2, 2017
Read article

Ask The Thought Leaders: What’s The Future Of Furniture?

During our lifetime furniture design has been primarily dictated by style. However, as we become gradually more entangled in the internet of things, function is going to become increasingly important.

Future of Everything
July 20, 2017
Read article

GaN power finds its way, via AirFuel, into Dell’s Lattitude 7285

GaN power element technology has found its way into a major application in the industry with the release of the Dell Latitude computer using the AirFuel standard.

Planet Analog
July 19, 2017
Read article

Wireless Electronic Tabletop Could Mean Many Fewer Power Cords

Tech-sector veteran Alex Lidow is on a mission to end the reliance on power cords to operate your electronic devices.

Seeker
June 15, 2017
Read article

GaN FETs Drive Fidelity and Efficiency in Class-D Audio Amplifiers

With the current maturity of Class-D audio amplifier architectures, amplifier fidelity and efficiency limitations are primarily at the device level. Silicon MOSFETs have been evolving for almost forty years, and their progress towards a perfect switch has slowed dramatically. There are some fundamental characteristics of MOSFETs that degrade sound quality and efficiency. In 2010, the enhancement mode Gallium nitride (GaN) power FET was introduced by Efficient Power Conversion (EPC), providing a large step towards the perfect switch.

Audio Engineering Society
May 11, 2017
Read article

This Wireless Desktop Could Foreshadow Our Future Without Cords

Wireless charging promises a cord-free future, one that offers freedom from being tethered to the end of a charging cable. One company might have its finger on the pulse for this wirelessly powered future. Alexander Lidow is the CEO and founder of Efficient Power Conversion, a company looking to expand upon its namesake. EPC most notably displays how it wants to revolutionize wireless charging with a seemingly simple desktop.

Interesting Engineering
May 23, 2017
Read article

How2 Cut The Power Cord: Wireless Power Is Ready For Prime Time

Wireless charging is not a new topic—it has been talked about for quite a while. Unfortunately, it has not seen widespread consumer acceptance. But, with a recently developed innovative approach to the design of transmission coils, wireless power is ready for widespread application.

How2Power
May, 2017
Read article

GaN-on-Silicon Power Devices: How to Dislodge Silicon-Based Power MOSFETs

Gallium nitride (GaN) power transistors designed for efficient power conversion have been in production for seven years. New markets, such as light detection and ranging, envelope tracking, and wireless charging, have emerged due to the superior switching speed of GaN. These markets have enabled GaN products to achieve significant volumes, low production costs, and an enviable reliability reputation. All of this provides adequate incentive for the more conservative design engineers in applications such as dc–dc converters, ac–dc converters, and automotive to start their evaluation process. So what are the remaining barriers to the conversion of the US$12 billion silicon power metal–oxide–semiconductor field-effect transistor (MOSFET) market? In a word: confidence.

Alex Lidow
March, 2017
Read article

GaN applications: The next step in power management growth

See some of the GaN applications demonstrated by Efficient Power Conversion Corporation at APEC 2017.

EDN Network
April 3, 2017
Read article

APEC 2017: GaN Technology Poised to Change the Way We Live

At APEC 2017, Efficient Power Conversion (EPC) showcased applications using eGaN technology in an effort to prove that it will soon change the way we live.

Electronics360
March 29, 2017
Read article

Emerging server technologies: 6 hot trends to watch

Gallium Nitride ICs: Increasing server power efficiencies - Reducing waste power, cooling, and space aren't just data-center-size concerns; they're also battles fought inside the confines of each rack. And, sometimes, even one small change can make a big difference.

TechBeacon
August 2, 2016
Read article

Rethinking Server Power Architecture in a Post-Silicon World

The demand for information in our society is growing at an unprecedented rate. With emerging technologies, such as cloud computing and the Internet of Things, this trend for more and faster access to information is showing no signs of slowing. What makes the transfer of information at high rates of speed possible are racks and racks of servers, mostly located in centralized data.

EEWeb
Alex Lidow, Ph.D., David Reusch, Ph.D., and John Glaser, Ph.D.
March, 2016
Read article on page 24

Material Miracles

Silicon, the stuff upon which the Valley was built, is maxing out. The future, according to some, belongs to gallium nitride. What is it, and what does it mean?

View video

What is GaN?

The cost of electrical power is a key driver of socioeconomic vitality, as it enables us to improve our quality of life and advance new applications and industries. GaN (gallium nitride) has emerged as a displacement technology to the venerable, but aged, silicon solutions that will allow us to stay ahead of our demand for more and more efficient power.

View video

RSS
123