News

Sign up today to get the latest news and updates from EPC on new product announcements, applications work, and much more. Sign up for EPC email updates or text "EPC" to 22828.

EPC to Showcase High Power Density eGaN FETs and ICs in Volume Customer Applications at PCIM Europe 2021 Digital Days

EPC to Showcase High Power Density eGaN FETs and ICs in Volume Customer Applications at PCIM Europe 2021 Digital Days

Efficient Power Conversion (EPC) will showcase the company’s latest enhancement-mode gallium nitride-based FETs and ICs demonstrating how GaN technology’s superior performance is transforming power delivery for automotive, computing, and robotics at the PCIM Europe 2021 Digital Days.

EL SEGUNDO, Calif.— April 2021 — The EPC team will be delivering two technical presentations, an educational tutorial, an exhibitor webinar, and participating in panel discussions on gallium nitride (GaN) technology and applications at the upcoming PCIM Europe 2021 Digital Days, May 3 – 7. In addition, the company will participate in the event’s virtual exhibition, showing its latest eGaN FETs and ICs in customers’ end products that are rapidly adopting eGaN® technology.

Read more
Categories: Press Releases

Using GaN FETs can be as simple as using Silicon FETs – an example in 48V systems

Using GaN FETs can be as simple as using Silicon FETs – an example in 48V systems

In this article, the author introduces a GaN FET compatible analog controller that yields a low bill-of-material count and give designers the ability to design a synchronous buck converter in the same simple way as using silicon FETs, and offers superior performance for 48 V power systems.

Power Electronics News
April, 2021
Read article

Read more
Categories: Articles

GaN ePower Stage IC-Based Inverter for Battery-Powered Motor Drive Applications

GaN ePower Stage IC-Based Inverter for Battery-Powered Motor Drive Applications

GaN transistors and ICs allow increasing power density in motor drive applications by eliminating electrolytic capacitors in the input filter. The superior switching behavior of GaN helps to remove dead time and obtain un-matched sinusoidal voltage and current waveforms for smoother, silent operation.

Bodo’s Power Systems
April, 2021
Read article

Read more
Categories: Articles

Efficient Power Conversion (EPC) Expands eToF Laser Driver IC Family of Products with Device Optimized for Augmented Reality

Efficient Power Conversion (EPC) Expands eToF Laser Driver IC Family of Products with Device Optimized for Augmented Reality

Efficient Power Conversion (EPC) announces the expansion of its new gallium nitride (GaN) integrated circuit (IC) product family offering higher performance and smaller solution size for time-of-flight (ToF) lidar applications including robotics, drones, 3D sensing, gaming, and autonomous cars.

EL SEGUNDO, Calif.— March 2021 — EPC announces the introduction of a laser driver that integrates a 40 V, 10 A FET with a gate driver and low-voltage differential signaling (LVDS) logic level input in a single chip for time-of-flight lidar systems used in robotics, drones, augmented reality, and gaming applications.

Read more
Categories: Press Releases

How GaN Integrated Circuits Are Redefining Power Conversion

How GaN Integrated Circuits Are Redefining Power Conversion

Gallium nitride (GaN) power devices have been in production for over 10 years and, beyond just performance and cost improvements, the most significant opportunity for GaN technology to impact the power conversion market comes from the intrinsic ability to integrate multiple devices on the same substrate. This capability will allow monolithic power systems to be designed on a single chip in a more straightforward, higher efficiency, and more cost-effective way.

Power Electronic News
March, 2021
Read article

Read more
Categories: Articles

Lidar Demonstration Board Drives Lasers with Currents up to 220 A with Under 3-ns Pulses using eGaN FETs

Lidar Demonstration Board Drives Lasers with Currents up to 220 A with Under 3-ns Pulses using eGaN FETs

The ultra-fast transition EPC2034C eGaN® FETs used on the EPC9150 enables high current pulses up to 220 A and pulse widths under 3 ns, thus allowing a lidar system to see farther, faster, and better.

EL SEGUNDO, Calif.— March 2021 — Efficient Power Conversion  (EPC) announces the availability of the EPC9150, a 200 V, high current, pulsed-laser diode driver demonstration board. In a lidar system, used to create 3-D maps for autonomous vehicle applications, speed and accuracy of object detection is critical. As demonstrated by this board, the rapid transition capability of the EPC2034C eGaN FETs provide power pulses to drive the laser diodes, VCSELs or LEDs up to ten times faster than an equivalent MOSFET and in a small fraction of the area, energy, and cost. Thus, enhancing the overall performance, including accuracy, precision, and processing speed as well as the price of a lidar system.

Read more
Categories: Press Releases

EPC Automotive Qualified 65 V eGaN FET Enables Higher Resolution for Lidar Systems

EPC Automotive Qualified 65 V eGaN FET Enables Higher Resolution for Lidar Systems

Efficient Power Conversion (EPC) expands AEC Q101 product family with the addition of the EPC2219, 65 V gallium nitride transistor with integrated reverse gate clamp diode optimized for high resolution lidar systems.

EL SEGUNDO, Calif.— March 2021 — EPC announces successful AEC Q101 qualification of the 65 V EPC2219 designed for lidar systems in the automotive industry and other harsh environments. 

Read more
Categories: Press Releases

Minimizing Thermo-mechanical Stress in Chipscale eGaN Devices

Minimizing Thermo-mechanical Stress in Chipscale eGaN Devices

Enhancement-mode gallium nitride (eGaN) FETs have demonstrated excellent thermomechanical reliability in actual operation in the field or when tested according to AEC or JEDEC standards. This is because of the inherent simplicity of the “package,” the lack of wire bonds, dissimilar materials, or mold compound. Recently, an extensive study of underfill products was conducted to experimentally generate lifetime predictions. A finite element analysis at the end of this section explains the experimental results and generates guidelines for selection of underfill based on key material properties.

Bodo's Power
March, 2021
Read article

Read more
Categories: Articles

EPC’s ePower Stage EPC2152 Integrated Circuit Named Finalist in Prestigious Elektra Awards

EPC’s ePower Stage EPC2152 Integrated Circuit Named Finalist in Prestigious Elektra Awards

EPC’s ePower™ Stage EPC2152 Integrated Circuit has been selected as a finalist in the Semiconductor Product of the Year – Analogue category, in this year’s Elektra Awards.  These prestigious annual awards have been running for over 19 years to reward and recognize companies and individuals for their excellent performance, innovation and contribution to the global electronics industry.

Companies are invited to enter individual categories and must demonstrate how innovative their product is, how it addresses its intended application better than incumbent products and what additional applications or markets could be opened-up.  Judging is carried out by an independently and unbiased, diverse, and knowledgeable panel of industry experts.  Due to the current COVID restrictions the Elektra Awards ceremony this year will be held virtually on 25th March and the winners announced during the event.

Read more
Categories: Press Releases

GaN Is Revolutionizing Motor Drive Applications

GaN Is Revolutionizing Motor Drive Applications

In last month’s Safety & Compliance column in How2Power, “WBG Semiconductors Pose Safety And EMI Challenges In Motor Drive Applications,”[1]Kevin Parmenter made some assertions about the difficulties of using SiC, and to a lesser extent GaN, power semiconductors in large motor-drive applications. This commentary is a response to that article, showing that GaN can be a game changer in low-voltage integrated motors.

How2Power
February, 2021
Read article

Read more
Categories: Articles

GaN is as Easy to Use as Silicon: EPC Introduces a 48 V to 12 V Demo Board Featuring EPC eGaN FETs and New Renesas DC-DC Controller

GaN is as Easy to Use as Silicon: EPC Introduces a 48 V to 12 V Demo Board Featuring EPC eGaN FETs and New Renesas DC-DC Controller

The combination of the Renesas dual synchronous GaN buck controller and ultra-efficient eGaN® FETs from EPC (Efficient Power Conversion) enables high power density and efficiency with the same BOM size and cost as silicon.

EL SEGUNDO, Calif.—  February, 2021 — EPC announces the availability of the EPC9157, a 300 W DC-DC demo board in the tiny 1/16th brick size, measuring just 33 mm x 22.9 mm x 9mm (1.3 x 0.9 x 0.35 in). The EPC9157 demo board integrates the Renesas ISL81806 80 V dual synchronous buck controller with the latest-generation EPC2218 eGaN FETs from EPC to achieve greater than 95% efficiency for 48 V input to 12 V regulated output conversion at 25 A.  

Read more
Categories: Press Releases

Podcast - Spirit Behind the Screen: EPC's Alex Lidow and GaN Reliability

Podcast - Spirit Behind the Screen: EPC's Alex Lidow and GaN Reliability

In this episode, Alex Lidow and Marti McCurdy discusses EPC’s test-to-failure method in improving gallium nitride (GaN) devices. According to Alex, testing to failure has allowed EPC to tease out the exact stressors that cause failure and improve EPC’s GaN devices 10-100 times the reliability of commercial devices, and even 100 times reliability in space applications.

Alex and Marti discuss:

(1:30) Why test to fail
(4:14) Learning from failure data and stressors
(11:38) Safe Operating Area
(14:30) Mechanical stressors
(17:45) EPC Space

Listen now

Read more
Categories: Interviews

EPC Releases Physics-Based Models That Project eGaN Device Lifetime in New Reliability Report

EPC Releases Physics-Based Models That Project eGaN Device Lifetime in New Reliability Report

Efficient Power Conversion (EPC) publishes Phase-12 Reliability Report adding to the extensive knowledge found in their first eleven reports. With this report, EPC demonstrates field experience of 226 billion eGaN ® device hours and a robustness capability unmatched by silicon power devices.

EL SEGUNDO, Calif.— January 2021 — EPC announces its Phase-12 Reliability Report, documenting the strategy used to achieve a remarkable field reliability record. eGaN devices have been in volume production for more than eleven years and have demonstrated very high reliability in over 226 billion hours of operation, most of which are in vehicles, LTE base stations, and satellites, to name just a few applications with rigorous operating conditions.

Read more
Categories: Press Releases

Intrinsic Failure Mechanisms in GaN-on-Si Power Transistors

Intrinsic Failure Mechanisms in GaN-on-Si Power Transistors

Standard qualification testing for semiconductors typically involves stressing devices at-or-near the limits specified in their data sheets for a prolonged period of time, or for a certain number of cycles. The goal of qualification testing is to have zero failures out of a large group of parts tested. By testing parts to the point of failure, an understanding of the amount of margin between the data sheet limits can be developed, but more importantly, an understanding of the intrinsic failure mechanisms of the semiconductor can be found.

IEEE Power Electronics Magazine
December, 2020
Read article

Read more
Categories: Articles

GaN Reliability Testing Beyond AEC for Automotive Lidar

GaN Reliability Testing Beyond AEC for Automotive Lidar

An automotive application using GaN power devices in high volume is lidar(light detection and ranging) for autonomous vehicles. Lidar technology provides information about a vehicle’s surroundings, thus requiring high accuracy and reliability to ensure safety and performance. This article will discus a novel testing mechanism developed by EPC to test eGaN devices beyond the qualification requirements of the Automotive Electronics Council (AEC) for the specific use case of lidar.

Power Systems Design
December, 2020
Read article

Read more
Categories: Articles

Efficient Power Conversion (EPC) Launches 40 V eGaN FET Ideal for High Power Density Solutions for USB-C Battery Chargers and Ultra-thin Point-of-Load Converters

Efficient Power Conversion (EPC) Launches 40 V eGaN FET Ideal for High Power Density Solutions for USB-C Battery Chargers and Ultra-thin Point-of-Load Converters

EPC introduces the 40 V, 3 milliohm EPC2055 eGaN® FET, offering designers a device that is smaller, more efficient, and more reliable than currently available devices for high performance, space-constrained applications.

EL SEGUNDO, Calif. — December 2020 — Efficient Power Conversion Corporation, the world’s leader in enhancement-mode gallium nitride on silicon (eGaN) power FETs and ICs, advances the performance capability of low voltage, off-the-shelf gallium nitride transistors with the introduction of the EPC2055 (3 mΩ, 40 V) eGaN FET. 

Read more
Categories: Press Releases

Efficient Power Conversion (EPC) and BrightLoop Converters Combine Design Expertise to Produce Smaller, Lighter Converters for Performance eMotorsport Vehicles

Efficient Power Conversion (EPC) and BrightLoop Converters Combine Design Expertise to Produce Smaller, Lighter Converters for Performance eMotorsport Vehicles

EL SEGUNDO, Calif. — December 2020 — BrightLoop Converters has greatly reduced the size, cost and improved reliability of its latest BB SP DC-DC buck converters thanks to Efficient Power Conversion Corporation’s (EPC) EPC2029 enhancement-mode gallium nitride (eGaN®) FET transistors. By switching from silicon (Si) transistors to gallium nitride (GaN), BrightLoop was able to increase the switching frequency of their design from 200 kHz to 600 kHz, while keeping the same efficiency. This design change increased the power density of the solution by a factor of approximately two and this resulted in lower cost by enabling the implementation of a smaller enclosure.

EPC’s EPC2029 is an 80 V, 48 A eGaN® FET featuring a 1 mm ball pitch. The wider pitch allows for placement of additional and larger vias under the device to enable high current carrying capability despite the extremely small 2.6 mm x 4.6 mm footprint.

Read more
Categories: Press Releases
RSS
1234567