News

Sign up today to get the latest news and updates from EPC on new product announcements, applications work, and much more. Sign up for EPC email updates or text "EPC" to 22828.

GaN Application Base Widens, Adoption Grows

GaN Application Base Widens, Adoption Grows

Mature, low-cost manufacturing and proven reliability spur use in EVs, smartphones, and consumer electronics.

Efficient Power Conversion (EPC) has logged more than 100 emerging applications for its eGaN FETs and ICs. Alex Lidow, the company’s CEO, said the five fastest-growing applications are lidar systems for robotics, drones, consumer products, driver alertness systems, and autonomous vehicles; DC-DC converters for AI systems, servers, and telecom power systems; motor drives for e-mobility and robotics; satellite systems, including motor drives and DC-DC power supplies that require radiation hardness; and solar power point trackers.

Semiconductor Engineering
December, 2021
Read article

Read more
Categories: GaN Market News

The Next Wave of GaN and SiC

The Next Wave of GaN and SiC

Gallium nitride and silicon carbide are designated wide-bandgap (WBG) semiconductors based on the energy required to shift electrons in these materials from the valence to the conduction band — about 3.2 eV for SiC and 3.4 eV for GaN, compared with just 1.1 eV for silicon. The WBG properties lead to a higher applicable breakdown voltage, which can reach up to 1,700 V in some applications. At this year’s digital only PCIM Europe, held in May, several companies showed their latest innovations in GaN and SiC and offered insights on where WBG technology is headed.

EE Times – Europe
July, 2021
Read article

Read more
Categories: Articles

Improving Reliability For GaN And SiC

Improving Reliability For GaN And SiC

Why these chips are gaining ground, and what still needs to be addressed. Suppliers of gallium nitride (GaN) and silicon carbide (SiC) power devices are rolling out the next wave of products with some new and impressive specs. But before these devices are incorporated in systems, they must prove to be reliable.

Semiconductor Engineering
June, 2020
Read article

Read more
Categories: Articles

Characterization of Wide Bandgap Power Semiconductor Devices Published by The Institution of Engineering and Technology

Characterization of Wide Bandgap Power Semiconductor Devices Published by The Institution of Engineering and Technology

Based on the authors' years of extensive experience, this is an authoritative overview of Wide Bandgap (WBG) device characterization.

EL SEGUNDO, Calif. – September 2018 – Efficient Power Conversion Corporation (www.epc-co.com) announces the publication by the Institution of Engineering and Technology of Characterization of Wide Bandgap Power Semiconductor Devices co-authored by EPC Senior Applications Engineer, Dr. Edward A. Jones. This textbook provides essential tools to assist researchers, advanced students, and practicing engineers in performing both static and dynamic characterization of WBG devices, particularly those based on using silicon carbide (SiC) and gallium nitride (GaN) power semiconductors. The book presents practical considerations for real applications and includes examples of applying the described methodology.

Read more
Categories: Press Releases
RSS