News

Sign up today to get the latest news and updates from EPC on new product announcements, applications work, and much more. Sign up for EPC email updates or text "EPC" to 22828.

Bodo’s Wide Bandgap Expert Talk - GaN Session - June 2021

Bodo’s Wide Bandgap Expert Talk - GaN Session - June 2021

A roundtable discussion with GaN industry experts hosted by Bodo’s Power Systems. Guests included:

  1. Alex Lidow, CEO and co-founder of Efficient Power Conversion
  2. Doug Bailey, Vice President Marketing & Applications Engineering at Power Integrations
  3. Dilder Chowdhury, Director, Strategic Marketing, Power GaN Technology at Nexperia
  4. Tom Ribarich, Sr. Director Strategic Marketing at Navitas Semiconductor
Read more
Categories: Articles

Efficient Power Conversion (EPC) Announces New Family of Radiation-Hardened Enhancement-Mode Gallium Nitride (eGaN) Transistors and Integrated Circuits for Demanding Space Applications

Efficient Power Conversion (EPC) Announces New Family of Radiation-Hardened Enhancement-Mode Gallium Nitride (eGaN) Transistors and Integrated Circuits for Demanding Space Applications

Efficient Power Conversion (EPC) introduces a new family of radiation-hardened (rad-hard) gallium nitride (GaN) products for power conversion solutions in critical spaceborne and other high reliability environments.

EL SEGUNDO, Calif.— June 2021 — EPC announces the introduction of a new family of radiation-hardened gallium nitride transistors and integrated circuits. With higher breakdown strength, faster switching speed, higher thermal conductivity and lower on-resistance, power devices based on GaN significantly outperform silicon-based devices. The lower resistance and gate charge enable faster power supply switching frequencies resulting in higher power densities, higher efficiencies, and more compact and lighter weight circuitry for critical spaceborne missions. Gallium nitride is also inherently radiation tolerant, making GaN-based devices a reliable, higher performing power transistor option for space applications.

Read more
Categories: Press Releases

Extreme GaN – What Happens When eGaN FETs are Exposed to Voltage and Current Levels Well Above Data Sheet Limits

Extreme GaN – What Happens When eGaN FETs are Exposed to Voltage and Current Levels Well Above Data Sheet Limits

Recently, Efficient Power Conversion (EPC) did a series of tests to take eGaN® FETs beyond their data sheet limits to quantify the effects of large amounts of overstress voltage and current and the results are published here for the first time.

Bodo’s Power Systems
May, 2021
Read article

Read more
Categories: Articles

Minimizing Thermo-mechanical Stress in Chipscale eGaN Devices

Minimizing Thermo-mechanical Stress in Chipscale eGaN Devices

Enhancement-mode gallium nitride (eGaN) FETs have demonstrated excellent thermomechanical reliability in actual operation in the field or when tested according to AEC or JEDEC standards. This is because of the inherent simplicity of the “package,” the lack of wire bonds, dissimilar materials, or mold compound. Recently, an extensive study of underfill products was conducted to experimentally generate lifetime predictions. A finite element analysis at the end of this section explains the experimental results and generates guidelines for selection of underfill based on key material properties.

Bodo's Power
March, 2021
Read article

Read more
Categories: Articles

GaN Is Revolutionizing Motor Drive Applications

GaN Is Revolutionizing Motor Drive Applications

In last month’s Safety & Compliance column in How2Power, “WBG Semiconductors Pose Safety And EMI Challenges In Motor Drive Applications,”[1]Kevin Parmenter made some assertions about the difficulties of using SiC, and to a lesser extent GaN, power semiconductors in large motor-drive applications. This commentary is a response to that article, showing that GaN can be a game changer in low-voltage integrated motors.

How2Power
February, 2021
Read article

Read more
Categories: Articles

Podcast - Spirit Behind the Screen: EPC's Alex Lidow and GaN Reliability

Podcast - Spirit Behind the Screen: EPC's Alex Lidow and GaN Reliability

In this episode, Alex Lidow and Marti McCurdy discusses EPC’s test-to-failure method in improving gallium nitride (GaN) devices. According to Alex, testing to failure has allowed EPC to tease out the exact stressors that cause failure and improve EPC’s GaN devices 10-100 times the reliability of commercial devices, and even 100 times reliability in space applications.

Alex and Marti discuss:

(1:30) Why test to fail
(4:14) Learning from failure data and stressors
(11:38) Safe Operating Area
(14:30) Mechanical stressors
(17:45) EPC Space

Listen now

Read more
Categories: Interviews

EPC Releases Physics-Based Models That Project eGaN Device Lifetime in New Reliability Report

EPC Releases Physics-Based Models That Project eGaN Device Lifetime in New Reliability Report

Efficient Power Conversion (EPC) publishes Phase-12 Reliability Report adding to the extensive knowledge found in their first eleven reports. With this report, EPC demonstrates field experience of 226 billion eGaN ® device hours and a robustness capability unmatched by silicon power devices.

EL SEGUNDO, Calif.— January 2021 — EPC announces its Phase-12 Reliability Report, documenting the strategy used to achieve a remarkable field reliability record. eGaN devices have been in volume production for more than eleven years and have demonstrated very high reliability in over 226 billion hours of operation, most of which are in vehicles, LTE base stations, and satellites, to name just a few applications with rigorous operating conditions.

Read more
Categories: Press Releases

Intrinsic Failure Mechanisms in GaN-on-Si Power Transistors

Intrinsic Failure Mechanisms in GaN-on-Si Power Transistors

Standard qualification testing for semiconductors typically involves stressing devices at-or-near the limits specified in their data sheets for a prolonged period of time, or for a certain number of cycles. The goal of qualification testing is to have zero failures out of a large group of parts tested. By testing parts to the point of failure, an understanding of the amount of margin between the data sheet limits can be developed, but more importantly, an understanding of the intrinsic failure mechanisms of the semiconductor can be found.

IEEE Power Electronics Magazine
December, 2020
Read article

Read more
Categories: Articles

GaN Reliability Testing Beyond AEC for Automotive Lidar

GaN Reliability Testing Beyond AEC for Automotive Lidar

An automotive application using GaN power devices in high volume is lidar(light detection and ranging) for autonomous vehicles. Lidar technology provides information about a vehicle’s surroundings, thus requiring high accuracy and reliability to ensure safety and performance. This article will discus a novel testing mechanism developed by EPC to test eGaN devices beyond the qualification requirements of the Automotive Electronics Council (AEC) for the specific use case of lidar.

Power Systems Design
December, 2020
Read article

Read more
Categories: Articles

GaN Reliability Testing Beyond AEC Proves Robustness for Automotive Lidar Applications

GaN Reliability Testing Beyond AEC Proves Robustness for Automotive Lidar Applications

Gallium nitride (GaN) power devices have been in volume production since March 2010 and have established a remarkable field-reliability record. An automotive application using GaN power devices in high volume is lidar (light detection and ranging) for autonomous vehicles. Lidar technology provides information about a vehicle’s surroundings, thus requiring high accuracy and reliability to ensure safety and performance. This article will discuss a novel testing mechanism developed by Efficient Power Conversion (EPC) to test eGaN devices beyond the qualification requirements of the Automotive Electronics Council (AEC) for the specific use case of lidar.

eeNews Europe
July 30, 2020
Read article

Read more
Categories: Articles

Improving Reliability For GaN And SiC

Improving Reliability For GaN And SiC

Why these chips are gaining ground, and what still needs to be addressed. Suppliers of gallium nitride (GaN) and silicon carbide (SiC) power devices are rolling out the next wave of products with some new and impressive specs. But before these devices are incorporated in systems, they must prove to be reliable.

Semiconductor Engineering
June, 2020
Read article

Read more
Categories: Articles

Testing Gallium Nitride Devices to Failure Demonstrates Robustness Unmatched by Silicon Power MOSFETs - Efficient Power Conversion Publishes 11th Reliability Report

Testing Gallium Nitride Devices to Failure Demonstrates Robustness Unmatched by Silicon Power MOSFETs - Efficient Power Conversion Publishes 11th Reliability Report

EPC’s Phase Eleven Reliability Report adds to the knowledge base published in the first ten reports. With this report, EPC demonstrates field experience of 123 billion device hours and a robustness capability unmatched by silicon power devices.

EL SEGUNDO, Calif.— April 2020 — EPC announces its Phase Eleven Reliability Report, documenting the strategy used to achieve a remarkable field reliability record. This strategy relied upon tests forcing devices to fail under a variety of conditions to create stronger products to serve demanding applications such as lidar for autonomous vehicles, LTE base stations, vehicle headlamps, and satellites to name just a few. 

Read more
Categories: Press Releases

Testing GaN Devices to Failure

Testing GaN Devices to Failure

Gallium Nitride (GaN) power devices have been in volume production since March 2010 with remarkable field reliability. This article details how by testing parts to the point of failure an understanding of the amount of margin between the data sheet limits can be developed, but more importantly, an understanding of the intrinsic failure mechanisms can be found. By knowing the intrinsic failure mechanisms, the root cause of failure, and the device’s behavior over time, temperature, electrical or mechanical stress, the safe operating life of a product can be determined over a more general set of operating conditions.

Power Systems Design
March 3, 2020
Read article

Read more
Categories: Articles

Qualifying and Quantifying GaN Devices for Power Applications

Qualifying and Quantifying GaN Devices for Power Applications

It’s okay to start using gallium-nitride (GaN) devices in your new designs. GaN transistors have become extremely popular in recent years. These wide-bandgap devices have been replacing LDMOS transistors in many power applications. For example, GaN devices are broadly being adopted for new RF power amplifiers used in cellular base stations, radar, satellites, and other high-frequency applications. In general, their ability to endure higher voltages and operate at frequencies well into the millimeter-wave (mmWave) range have them replacing traditional RF power transistors in most amplifier configurations.

Electronic Design
November, 2019
Read article

Read more
Categories: Articles

Efficient Power Conversion (EPC) Publishes Tenth Reliability Report Highlighting Gallium Nitride Device Testing Beyond Automotive AEC-Q101 Qualification

Efficient Power Conversion (EPC) Publishes Tenth Reliability Report Highlighting Gallium Nitride Device Testing Beyond Automotive AEC-Q101 Qualification

EPC’s Phase Ten Reliability Report adds to the growing knowledge base published in the first nine reports. With this report, EPC has stress-tested over 30,000 parts for a total of over 18 million hours without failure.  There have been no field failures in over two years despite shipping millions of parts.

EL SEGUNDO, Calif.— February 2019 — EPC announces its Phase Ten Reliability Report, documenting the test results leading to the successful completion of automotive AEC-Q101 qualification. AEC-Q101 demands the highest level of reliability standards for power FETs, requiring not only zero datasheet failures, but also low parametric drift during stress testing.  Of note is that EPC’s WLCS packaging passed all the same testing standards created for conventional packaged parts, demonstrating that the superior performance of chip-scale packaging does not compromise ruggedness or reliability.

Read more
Categories: Press Releases

Why go for GaN?

Why go for GaN?

GaN technology has matured to a point where it can challenge traditional silicon technology.  Gallium nitride(GaN)-on-silicon low voltage power devices have enabled many new applications since commercial availability began in 2010. New markets, such as light detection and ranging (LiDAR), envelope tracking, and wireless power, emerged due to the superior switching speed of GaN. These new applications have helped develop a strong supply chain, low production costs, and an enviable reliability record. All of this provides adequate incentive for the more conservative design engineers in applications, such as DC/DC converters, AC/DC converters, and automotive to start their evaluation process. In this article, the factors leading to the rapid acceleration of the adoption rate are explored.

Electronics Weekly
January 2019
Read article

Read more
Categories: Articles

GaN-on-Silicon Power Devices: How to Dislodge Silicon-Based Power MOSFETs

GaN-on-Silicon Power Devices: How to Dislodge Silicon-Based Power MOSFETs

Gallium nitride (GaN) power transistors designed for efficient power conversion have been in production for seven years. New markets, such as light detection and ranging, envelope tracking, and wireless charging, have emerged due to the superior switching speed of GaN. These markets have enabled GaN products to achieve significant volumes, low production costs, and an enviable reliability reputation. All of this provides adequate incentive for the more conservative design engineers in applications such as dc-dc converters, ac-dc converters, and automotive to start their evaluation process. So what are the remaining barriers to the conversion of the US$12 billion silicon power metal-oxide-semiconductor field-effect transistor (MOSFET) market? In a word: confidence. Design engineers, manufacturing engineers, purchasing managers, and senior management all need to be confident that GaN will provide benefits that more than offset the risk of adopting a new technology. Let's look at three key risk factors: supply chain risk, cost risk, and reliability risk.

IEEE Spectrum
Read article

Read more

Efficient Power Conversion (EPC) Publishes Ninth Reliability Report Documenting Millions of GaN Technology Device Hours with Zero Failures After Rigorous Stress Testing

Efficient Power Conversion (EPC) Publishes Ninth Reliability Report Documenting Millions of GaN Technology Device Hours with Zero Failures After Rigorous Stress Testing

EPC’s Phase Nine Reliability Report documents a combined total of over 9 million GaN stress device-hours with zero failures. This report focuses on thermo-mechanical board level reliability, describing for the first time, a predictive model for solder joint integrity and showing the superior reliability of wafer level chip-scale packaging (WLCSP) GaN technology over comparable packaged devices.

EL SEGUNDO, Calif.— April 2017 — EPC announces its Phase Nine Reliability Report showing the results of a rigorous set of thermo-mechanical board level reliability testing. The Phase Nine Reliability Report adds to the growing knowledge base previously published in EPC’s first eight reports and represents an ongoing commitment to study, learn, and share information on the reliability of GaN technology.

Read more
Categories: Press Releases

eGaN Technology Reliability and Physics of Failure - Gate Voltage Stress Reliability

eGaN Technology Reliability and Physics of Failure - Gate Voltage Stress Reliability

The previous installment in this series focused on the physics of failure surrounding thermo-mechanical reliability of EPC eGaN wafer level chip-scale packages. A fundamental understanding of the potential failure modes under voltage bias is also important. This installment will provide an overview of the physics of failure associated with voltage bias at the gate electrode of gallium nitride (GaN) field effect transistors (FETs). Here we look at the case of taking the gate control voltage to the specified limit and beyond to investigate how eGaN FETs behave over a projected lifetime.

Planet Analog
Chris Jakubiec
November 29, 2016
Read article

Read more
Categories: Articles

eGaN Technology Reliability and Physics of Failure - Strain on solder joints

eGaN Technology Reliability and Physics of Failure - Strain on solder joints

The first three installments in this series covered field reliability experience and stress test qualification of EPC’s enhancement-mode gallium nitride (eGaN) field effect transistors (FETs) and integrated circuits (ICs). Excellent field reliability that was documented is the result of applying stress tests covering the intended operating conditions the devices will experience within applications. Of equal importance is understanding the underlying physics of how eGaN devices will fail when stressed beyond intended operating conditions (e.g. datasheet parameters and safe operating area). This installment will take a deeper dive into the physics of failure centered around thermo-mechanical reliability of eGaN wafer level chip-scale packages (WLCSP).

Planet Analog
Chris Jakubiec
September 7, 2016
Read article

Read more
Categories: Articles
RSS
12