GaN Talk a blog dedicated to crushing silicon
Term: GaN FET
11 post(s) found

eGaN FETs Are Low EMI Solutions!

eGaN FETs Are Low EMI Solutions!
May 19 2020

GaN FETs can switch significantly faster than Si MOSFETs causing many system designers to ask − how does higher switching speeds impact EMI?

This blog discusses simple mitigation techniques for consideration when designing switching converter systems using eGaN® FETs and will show why GaN FETs generate less EMI than MOSFETs, despite their fast-switching speeds.

ePower™ Stage – Redefining Power Conversion

ePower™ Stage – Redefining Power Conversion
Mar 16 2020

Beyond just performance and cost improvement, the most significant opportunity for GaN technology to impact the power conversion market comes from its intrinsic ability to integrate multiple devices on the same substrate. GaN technology, as opposed to standard silicon IC technology, allows designers to implement monolithic power systems on a single chip in a more straightforward and cost-effective way.

Today, the most common building block used in power conversion is the half bridge. In 2014, EPC introduced a family of integrated half-bridge devices which became the starting point for the journey towards a power system-on-a-chip. This trend was expanded with the introduction of the EPC2107 and EPC2108, which integrated half bridges with integrated synchronous bootstrap. In 2018 we further continued the integration path with the introduction of eGaN ICs combining gate drivers with high-frequency GaN FETs in a single chip for improved efficiency, reduced size, and lower cost. Now, the ePower™ Stage IC family redefines power conversion by integrating all functions in a single GaN-on-Si integrated circuit at higher voltages and higher frequency levels beyond the reach of silicon.

eGaN vs. Silicon

eGaN vs. Silicon
Jan 23 2020

This post was originally published by Dr. John Glaser & Dr. David Reusch on June 13, 2016 on the Power Systems Design web site.

Comparing Dead-time Losses for eGaN FETs and Silicon MOSFETs in Synchronous Rectifiers

There have been several comparisons of eGaN FETs with silicon MOSFETs in a variety of applications, including hard-switched, soft-switched, and high-frequency power conversion. These studies have shown that eGaN FETs have large efficiency and power density advantages over silicon MOSFETs. Here we’ll focus on the use of eGaN FETs in synchronous rectifier (SR) applications and the importance of dead-time management. We show that eGaN FETs can dramatically reduce loss due to dead-time in synchronous rectifiers above and beyond the benefits of low RDS(on)and charge.

eGaN FETs and ICs Bring Precision Control to Surgical Robots

eGaN FETs and ICs Bring Precision Control to Surgical Robots
Nov 14 2018

Minimal invasive surgery using surgical robots gives unprecedented control to surgeons looking to achieve the next level of precision, thereby reducing risk and trauma to the patient and speeding recovery. Many motors are required to control the various robotic appendages, such as arms, joints, and tool control, that give the surgical robot the required degrees of freedom (DOF) and dexterity to perform extremely delicate tasks. Weight and size of motor control circuitry are thus important factors in the design of such robots as they directly impact the size of the motor that manipulates the robot’s appendages during surgery.

The motor of choice for robotic surgery is the 3-phase brushless DC (BLDC) motor These motors are compact for their power rating, can be precisely controlled, offer high electro-mechanical efficiency, and can operate with minimal vibration when properly controlled. The choice of motor voltage lies in the range of 24 V to 48 V with balancing power conductor thickness and weight with insulation thickness and stiffness for optimum performance and dexterity being the determining factors.

What Customers Are Asking About An Amazing New Technology – GaN-based Power System Solutions

What Customers Are Asking About An Amazing New Technology – GaN-based Power System Solutions
Jul 24 2018

Enhancement-mode GaN power devices, (eGaN® FETs and ICs) provide the path for users to differentiate their end products. This new technology gives significantly higher efficiencies in the ever-present power supply and delivery circuits that fuel our gadgets and electronic equipment.

As the sales manager for the Americas, I am in the enviable position of working with customers to create a new vision of excellence so they continue to lead in their market space and contribute optimizing power consumption by reducing energy consumption.

Power systems designs introducing new technologies and approaches is always met with curiosity and evaluation. Customers always ask the most fundamental and far-reaching questions about the attributes and implementation of new technologies. Therefore, I thought documenting the most common questions I have received will help others considering the use of GaN technology pave the way to their confident adoption of this transitional technology.

Driving GaN Into The Fast Lane

Driving GaN Into The Fast Lane
Jun 12 2018

Ask EPC's chief executive, Alex Lidow, what the future holds for his GaN power device business, and automotive certification features prominently.

Recently delivering AEC Q101-qualified 80 V discrete transistors for LiDAR, 48V power distribution systems and other applications, the company's latest enhancement-mode FETs deliver higher switching frequencies and efficiencies than silicon MOSFETs, in a smaller footprint. And this is just the beginning.

"We have more transistors as well as integrated circuits designed for LiDAR [sensors] and are proceeding with automotive certification here," highlights Lidow. "LiDAR is under intense cost and performance pressure so integrating components and improving performance while lowering the cost is a big deal."

Four Ways GaN Technology Helps Save the Planet

Four Ways GaN Technology Helps Save the Planet
Apr 11 2017

Gallium nitride (GaN) is a better semiconductor than silicon. There are many crystals that are better than silicon, but the problem has always been that they are far too expensive to be used in every application where silicon is used. But, GaN can be grown as an inexpensive thin layer on top of a standard silicon wafer enabling devices that are faster, smaller, more efficient, and less costly than their aging silicon counterparts.

My Predictions for 2017

My Predictions for 2017
Nov 11 2016

In January of 2016 I made several predictions for the then-nascent year. Predictions were made for new markets such as wireless charging, augmented reality, autonomous vehicles, and advances in medical diagnostics and internet access. Progress in these markets was made on all fronts, sometimes faster and sometimes slower than anticipated. So here we are about to start a new year and, perhaps foolishly I am ready once again to predict the future.

Gallium Nitride Brings Sound Quality and Efficiency to Class-D Audio

Gallium Nitride Brings Sound Quality and Efficiency to Class-D Audio
Oct 27 2016

Class-D audio amplifiers have traditionally been looked down upon by audiophiles, and in most cases, understandably so. Switching transistors for Class-D amplifiers have never had the right combination of performance parameters to produce an amplifier with sufficient open-loop linearity to satisfy the most critical listeners. This restricted the classical analog modulator Class-D systems to lower-power, lower-quality sound systems.

To accomplish the required headline marketing THD+N performance targets, Class-D amplifiers have had to resort to using large amounts of feedback to compensate for their poor open-loop performance. By definition, large amounts of feedback introduce transient intermodulation distortion (TIM), which introduces a ‘harshness’ that hides the warm subtleties and color of the music that were intended for the listening experience.