GaN Talk a blog dedicated to crushing silicon
Term: IC
11 post(s) found

Nov 14, 2023

Selecting the Best GaN Gate Driver

Chang-Woo Ryu, Senior FAE, Korea

Learn about what key factors you should consider when selecting a GaN gate driver. Make the best choice for your power electronics design here.

Jan 28, 2023

A Path to a Sustainable Future with GaN Power ICs

Renee Yawger, Director of Marketing

Sustainable energy is crucial in today’s world, and GaN Power ICs can help your company get there. Find out more here from EPC.

Mar 16, 2022

See How GaN is Leading the 48 V Revolution Across Multiple Industries at APEC 2022

Rick Pierson, Senior Manager, Digital Marketing

APEC is The Premier Global Event in Applied Power Electronics

Preparations are well underway for EPC to head to Houston for the Applied Power Electronics Conference (APEC). The team is excited to be back, in-person exhibiting a large variety of demonstrations showcasing how the superior performance of GaN is transforming the delivery of power across many industries, including computing, communications, and e-mobility.

Here’s a sneak peek at some of the key application areas we will be showcasing in Booth 1302 at APEC.

Aug 17, 2021

From Development Board to Buck Converter

Mark Gurries, Field Applications Engineer

EPC development boards offer the opportunity to evaluate eGaN® FETs and ICs in common applications. For example, the EPC9094 half-bridge development board can be configured as a buck or boost converter. The EPC9094 features the newly released EPC2054 200 V 43 mOhm max eGaN FET in a 1.3 x 1.3 mm 2 x 2 pin WLCSP package. The very low RDS(on) value of this very small FET permits it to support high current loads from a high voltage supply. To demonstrate this ability, we will modify the EPC9094 development board to a buck converter. Using a 140 V supply, Spice simulation suggest 28 V output at 2.5 A will offer a high 90% efficiency. A Vishay IHLP-4040DZET330M11, 33 uH, 4.4 A, 95 mOhm Max, 10.2 x 10.8 x 4 mm inductor is selected which will provide 40% ripple at 500 Khz. Output capacitors consisted of four 10 uF Y5V 50V 1210 ceramic capacitors. The simulation showed a tradeoff between ripple current and overall efficiency when switching frequency was changed between 500 kHz down to 375 kHz. The simulation also showed that adjusting the dead time to permit full ZVS transition from high to low maximized the light load efficiency performance in the buck converter.

Jul 29, 2021

High-Quality, Low-Cost Audio Achieved with GaN

Renee Yawger, Director of Marketing

Until recently, to achieve high-quality sound from an audio amplifier cost thousands of dollars and relied on a large, heavy, power-hungry class-A amplifier. Now, the advent of gallium nitride FETs and ICs is ushering the age of high quality, lower cost class-D audio amplifiers. 

Distortion Performance Issues Lowered with GaN

Historically, meeting the required distortion performance targets (THD+N, TIM and IM) for high-quality audio, class-D amplifiers had to resort to incorporating large amounts of feedback circuitry to compensate for poor open-loop performance. The source of this distortion was the silicon power MOSFET.

Apr 20, 2021

Pulsing 1550 nm Lasers for Lidar

Steve Colino, Vice President, Strategic Technical Sales

Pulsed lidar systems typically use either 905 nm or 1550 nm lasers for optical emission.  Above 1400 nm, various elements of the eye absorb the light, impeding it from reaching and damaging the retina.  As laser power is increased, not all of it is absorbed, and at some point, retinal damage may occur.  Since 905 nm light does not get absorbed, it does reach the retina, so care must be used to limit the energy density to prevent damage.

If the decision is to use 1550 nm light, efficiency differences in the semiconductor laser make it necessary to use higher current for the same optical power emitted compared with 905 nm light.  Additionally, the same characteristics that allow the light to be absorbed by the eye before getting to the retina cause it to be absorbed by the atmosphere.  This phenomenon is amplified as humidity increases to fog, rain, or snow.  The drive power required for a 1550 nm laser may be up to 10 times higher than for a 905 nm laser based system.  Fortunately, there is a solution to deliver the power necessary to drive 1550 nm lasers while maintaining the edge speed and pulse required for high resolution in pulsed lidar applications.

Mar 22, 2021

eToF™ Laser Driver ICs for Advanced Autonomy Lidar

John Glaser , Ph.D., Director of Applications

Co-written by Steve Colino

Laser drivers for light distancing and ranging (lidar) are used in a pulsed-power mode. What are the basic requirements for these laser drivers?

A new family of integrated laser driver ICs meets all these requirements.  The first release, the EPC21601 laser driver IC, integrates a 40 V, 10 A FET with integrated gate driver and 3.3 V logic level input in a single chip for time-of-flight (ToF) lidar systems used in robotics, surveillance systems, drones, autonomous cars, and vacuum cleaners. This chip offers frequency capability up to 200 MHz in a low inductance, economical, 1 mm x 1.5 mm BGA package.

Dec 14, 2020

How to Design a Bi-Directional 1/16th Brick 48 V-12 V Converter Using Monolithic GaN ePower™ Stage

Alex Lidow, Ph.D., CEO and Co-founder

Brick DC-DC converters are widely used in data center, telecommunication and automotive applications, converting a nominal 48 V bus to (or from) a nominal 12 V bus. Advances in GaN integrated circuit (IC) technology have enabled the integration of the half bridge and gate drivers, resulting in a single chip solution that simplifies layout, minimizes area, and reduces cost.

This application note discusses the design of a digitally controlled bi-directional 1/16th brick converter using the integrated GaN power stage for 48 V-to-12 V application, with up to 300 W output power, and peak efficiency of 95%.

The standard dimension of the 1/16th brick converter is 33 x 22.9 mm (1.3 x 0.9 inch). The height limit for this design is set to 10 mm (0.4 inch).

Jan 02, 2020

2020 New Year with GaN

Nick Cataldo, Senior Vice President for Global Sales and Marketing

Dear Friends, colleagues and partners of EPC,

Happy New Year to you and your family from all of us at EPC!

2019 was a year to remember for EPC’s GaN innovations and the multiple use cases for GaN that have come to fruition. EPC’s latest generation of GaN products have enabled engineers to gain power stage advantages due to their low RDS(on) characteristics, higher efficiency, enhanced thermal properties, small size and low cost. Now, more than ever, power system designers are switching from silicon devices to higher performance GaN components.

Jul 24, 2018

What Customers Are Asking About An Amazing New Technology – GaN-based Power System Solutions

Andrea Mirenda, Vice President of Americas Sales

Enhancement-mode GaN power devices, (eGaN® FETs and ICs) provide the path for users to differentiate their end products. This new technology gives significantly higher efficiencies in the ever-present power supply and delivery circuits that fuel our gadgets and electronic equipment.

As the sales manager for the Americas, I am in the enviable position of working with customers to create a new vision of excellence so they continue to lead in their market space and contribute optimizing power consumption by reducing energy consumption.

Power systems designs introducing new technologies and approaches is always met with curiosity and evaluation. Customers always ask the most fundamental and far-reaching questions about the attributes and implementation of new technologies. Therefore, I thought documenting the most common questions I have received will help others considering the use of GaN technology pave the way to their confident adoption of this transitional technology.