GaN Talk a blog dedicated to crushing silicon
Term: Robots
3 post(s) found

ePower™ Stage – Redefining Power Conversion

ePower™ Stage – Redefining Power Conversion
Mar 16 2020

Beyond just performance and cost improvement, the most significant opportunity for GaN technology to impact the power conversion market comes from its intrinsic ability to integrate multiple devices on the same substrate. GaN technology, as opposed to standard silicon IC technology, allows designers to implement monolithic power systems on a single chip in a more straightforward and cost-effective way.

Today, the most common building block used in power conversion is the half bridge. In 2014, EPC introduced a family of integrated half-bridge devices which became the starting point for the journey towards a power system-on-a-chip. This trend was expanded with the introduction of the EPC2107 and EPC2108, which integrated half bridges with integrated synchronous bootstrap. In 2018 we further continued the integration path with the introduction of eGaN ICs combining gate drivers with high-frequency GaN FETs in a single chip for improved efficiency, reduced size, and lower cost. Now, the ePower™ Stage IC family redefines power conversion by integrating all functions in a single GaN-on-Si integrated circuit at higher voltages and higher frequency levels beyond the reach of silicon.

Harnessing the Power of GaN for Motor Drives – Servo drives, robotics, drones

Harnessing the Power of GaN for Motor Drives – Servo drives, robotics, drones
Sep 12 2019

With advancements in motor technology, power densities have increased; motors are built in smaller form factors and designed for higher speeds, and higher precision, which requires higher electrical frequencies.

3-phase brushless DC (BLDC) motors are compact for their power ratings, can be precisely controlled, offer high electro-mechanical efficiency, and can operate with minimal vibration when properly controlled. These motors are increasingly or exclusively used in precision applications like servo drives, robotics, such as surgical robots, and drones, such as quadcopters. To keep current ripple within a reasonable range, these motors – given their low inductance – require switching frequencies up to 100kHz. A FET that can operate efficiently at high frequency is required to minimize losses and offset the torque ripple in the motor which creates vibrations, reduces drive precision and decreases efficiency.

eGaN FETs and ICs Bring Precision Control to Surgical Robots

eGaN FETs and ICs Bring Precision Control to Surgical Robots
Nov 14 2018

Minimal invasive surgery using surgical robots gives unprecedented control to surgeons looking to achieve the next level of precision, thereby reducing risk and trauma to the patient and speeding recovery. Many motors are required to control the various robotic appendages, such as arms, joints, and tool control, that give the surgical robot the required degrees of freedom (DOF) and dexterity to perform extremely delicate tasks. Weight and size of motor control circuitry are thus important factors in the design of such robots as they directly impact the size of the motor that manipulates the robot’s appendages during surgery.

The motor of choice for robotic surgery is the 3-phase brushless DC (BLDC) motor These motors are compact for their power rating, can be precisely controlled, offer high electro-mechanical efficiency, and can operate with minimal vibration when properly controlled. The choice of motor voltage lies in the range of 24 V to 48 V with balancing power conductor thickness and weight with insulation thickness and stiffness for optimum performance and dexterity being the determining factors.