テクノロジー・ブリーフ: TB001
eGaN® 技術

エンハンスメント・モード
窒化ガリウム技術

シリコンの道は终点・・・

破壊的なソリューションは、最終製品の差別化を新たなレベルに導きます・・・窒化ガリウムは、破壊的なソリューションです!
あなたのパワー設計において、シリコンMOSFETに対するGaNのFETとICの利点:
- スイッチング速度が高速
- 小型
- 高効率
- 低コスト

GaNが新たな能力を可能にする

<table>
<thead>
<tr>
<th>評価項目</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>より低いオン抵抗：導通損失が小さい</td>
<td>より高速、より高効率、より低コスト</td>
<td>nチャネルMOSFETのように動作、ただし、「もっと」高速</td>
</tr>
<tr>
<td>より高速なデバイス：スイッチング損失が小さい</td>
<td></td>
<td>統合化：省スペース、効率向上、設計の単純化、そして低コスト</td>
</tr>
<tr>
<td>より小さな容量：デバイスを充放電するときの損失が小さい</td>
<td></td>
<td>包括的な設計サポート：デバイス・モデル、アプリケーション・ノート、デモ・ボード、技術資料</td>
</tr>
<tr>
<td>回路を駆動するために必要な電力が小さい</td>
<td></td>
<td></td>
</tr>
<tr>
<td>プリント回路基板上のスペースが小さくて済む小型デバイス</td>
<td></td>
<td></td>
</tr>
<tr>
<td>より低コスト</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GaNは使いうやすい

<table>
<thead>
<tr>
<th>評価項目</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GaNは費用対効果が高い

<table>
<thead>
<tr>
<th>評価項目</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GaNオン・シリコン: 安価な基板</td>
<td></td>
<td></td>
</tr>
<tr>
<td>既存CMOS工場で製造: こねられた低コストのプロセス</td>
<td></td>
<td></td>
</tr>
<tr>
<td>システム・コストの削減: 小型化、受動部品点数の削減</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GaNは信頼性が高い

<table>
<thead>
<tr>
<th>評価項目</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AEC-Q101品質

<table>
<thead>
<tr>
<th>評価項目</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>実証済みの技術：フィールドで300億時間の後、フェーズ9の信頼性レポートを公表</td>
</tr>
<tr>
<td></td>
<td></td>
<td>安定したサプライチェーン</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GaNは本質的に放射線に強い</td>
</tr>
</tbody>
</table>

EPC – GaN技術のリーダー | WWW.EPC-CO.COM/EPC/JP | COPYRIGHT 2019 | 1
テクノロジー・ブリーフ：TB001
GaN® 技術

エンハンスメント・モード窒化ガリウム (eGaN®) トランジスタは、伝統的なシリコン・トランジスタと比べて、導電性が優れているワイド・バンドギャップ・デバイスなので、同じオン抵抗 R_{on} に対して、より小型でより小さい容量のデバイスです。

エンハンスメント・モード（ノーマル・オフ）の動作によって、パワーの設計者は、スイッチングのアプリケーションにおいて、窒化ガリウムの特性の優位性を活用することができます。

容量とインダクタンスは、スイッチング速度を遅くします。チップスケール・パッケージ、速度、電圧オーバーシュート、リングングに関して、比類のないスイッチング特性を可能にする低インダクタンスを提供すると同時に、eGaN FETのサイズが小さいと簡単構造によって、超低容量を実現しています。逆回復電流Q_{rr}がゼロなので、高周波での損失も低減します。

eGaN FETとICのスイッチング特性によって、より高い電力密度、より高い周波数、より高いスイッチング精度、より大きいパッス電圧、より小さい電圧オーバーヘッドが可能になります。この技術は、さまざまな電力と電圧のレベルに合わせて調整することができます。

eGaNのトランジスタとICは、より高速
より小型、より高効率、より低コスト。

![より高速なトランジスタ・・・より小型のシステム](Image)

eGaNトランジスタとICは、熱効率が高いため、比類のない電力密度を実現可能

eGaN FETの設計は、基板面積が半分以下で、60％以上大きな出力電力が得られます。

<table>
<thead>
<tr>
<th>出力電流 (A)</th>
<th>効率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>86</td>
</tr>
<tr>
<td>6</td>
<td>87</td>
</tr>
<tr>
<td>8</td>
<td>88</td>
</tr>
<tr>
<td>10</td>
<td>89</td>
</tr>
<tr>
<td>12</td>
<td>90</td>
</tr>
<tr>
<td>14</td>
<td>91</td>
</tr>
<tr>
<td>16</td>
<td>92</td>
</tr>
<tr>
<td>18</td>
<td>93</td>
</tr>
<tr>
<td>20</td>
<td>94</td>
</tr>
<tr>
<td>22</td>
<td>95</td>
</tr>
</tbody>
</table>

シリコンMOSFET

Q1 = 100℃
Q2 = 80℃
$I_{\text{OUT}} = 14$ A

eGaN FET

Q1 = 98℃
Q2 = 84℃
$I_{\text{OUT}} = 22$ A

ファン速度 = 200 LFM, $V_{\text{in}} = 48$ V, $V_{\text{out}} = 12$ V, $f_{\text{sw}} = 300$ kHz, $L = 4.7$ µH

EPC – GaN技術のリーダー | WWW.EPC-CO.COM/EPC/JP | COPYRIGHT 2019 | 2
テクノロジー・ブリーフ: TB001
eGaN® 技術

設計サポートはwww.epc-co.com/epc/jpをご覧ください。

<table>
<thead>
<tr>
<th>型番</th>
<th>構成</th>
<th>V_{DS}</th>
<th>最大 R_{DS(on)} (mΩ) @ 5 V_{DS}</th>
<th>Q_{d} の標準値 (nC)</th>
<th>Q_{SS} の標準値 (nC)</th>
<th>Q_{DS} の標準値 (nC)</th>
<th>Q_{RMS} の標準値 (nC)</th>
<th>I_{D} (A) パルス</th>
<th>I_{D} (A) パッケージ</th>
<th>パッケージ (mm)</th>
<th>開発基板</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPC2040</td>
<td>シングル</td>
<td>15</td>
<td>30</td>
<td>0.745</td>
<td>0.23</td>
<td>0.14</td>
<td>0.42</td>
<td>0</td>
<td>3.4</td>
<td>28</td>
<td>BGA 0.85 x 1.2</td>
</tr>
<tr>
<td>EPC2111</td>
<td>ハーフブリッジ</td>
<td>30</td>
<td>19</td>
<td>8</td>
<td>1.7</td>
<td>4.5</td>
<td>0.6</td>
<td>1.4</td>
<td>3.3</td>
<td>9.6</td>
<td>0</td>
</tr>
<tr>
<td>EPC2100</td>
<td>ハーフブリッジ</td>
<td>30</td>
<td>8.2</td>
<td>2.1</td>
<td>3.6</td>
<td>15</td>
<td>1.3</td>
<td>4.8</td>
<td>0.6</td>
<td>2.7</td>
<td>0</td>
</tr>
<tr>
<td>EPC2023</td>
<td>シングル</td>
<td>30</td>
<td>1.45</td>
<td>19</td>
<td>5.7</td>
<td>3.2</td>
<td>0.2</td>
<td>19</td>
<td>0</td>
<td>0.09</td>
<td>0</td>
</tr>
<tr>
<td>EPC9004</td>
<td>シングル</td>
<td>40</td>
<td>110</td>
<td>0.37</td>
<td>0.12</td>
<td>0.047</td>
<td>0.63</td>
<td>0</td>
<td>4</td>
<td>7.5</td>
<td>0</td>
</tr>
<tr>
<td>EPC2014C</td>
<td>シングル</td>
<td>40</td>
<td>16</td>
<td>2</td>
<td>0.7</td>
<td>0.3</td>
<td>0.4</td>
<td>0</td>
<td>10</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>EPC2015C</td>
<td>シングル</td>
<td>40</td>
<td>4</td>
<td>8.7</td>
<td>2.7</td>
<td>1.2</td>
<td>1.9</td>
<td>0</td>
<td>53</td>
<td>235</td>
<td>0</td>
</tr>
<tr>
<td>EPC2030</td>
<td>シングル</td>
<td>40</td>
<td>2.4</td>
<td>18</td>
<td>5.8</td>
<td>3.4</td>
<td>32</td>
<td>0</td>
<td>48</td>
<td>490</td>
<td>0</td>
</tr>
<tr>
<td>EPC2024</td>
<td>シングル</td>
<td>40</td>
<td>1.5</td>
<td>18</td>
<td>5.1</td>
<td>2.4</td>
<td>45</td>
<td>0</td>
<td>90</td>
<td>560</td>
<td>0</td>
</tr>
<tr>
<td>EPC108</td>
<td>同期ブート付きデュアル</td>
<td>60</td>
<td>240</td>
<td>3300</td>
<td>0.24</td>
<td>0.044</td>
<td>0.106</td>
<td>0.02</td>
<td>0.047</td>
<td>0.004</td>
<td>0.71</td>
</tr>
<tr>
<td>EPC2035</td>
<td>シングル</td>
<td>60</td>
<td>45</td>
<td>0.88</td>
<td>0.25</td>
<td>0.16</td>
<td>2.6</td>
<td>0</td>
<td>1.7</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>EPC2012</td>
<td>ハーフブリッジ</td>
<td>60</td>
<td>4.9</td>
<td>8</td>
<td>2.5</td>
<td>1.5</td>
<td>26</td>
<td>31</td>
<td>0</td>
<td>30</td>
<td>220</td>
</tr>
<tr>
<td>EPC2031</td>
<td>シングル</td>
<td>60</td>
<td>3</td>
<td>16</td>
<td>5</td>
<td>3</td>
<td>48</td>
<td>0</td>
<td>48</td>
<td>450</td>
<td>0</td>
</tr>
<tr>
<td>EPC2011</td>
<td>ハーフブリッジ</td>
<td>60</td>
<td>11.5</td>
<td>2.8</td>
<td>3.3</td>
<td>13</td>
<td>1.1</td>
<td>0.5</td>
<td>9.3</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>EPC2020</td>
<td>シングル</td>
<td>60</td>
<td>2.2</td>
<td>16</td>
<td>3.9</td>
<td>2.3</td>
<td>50</td>
<td>0</td>
<td>90</td>
<td>470</td>
<td>0</td>
</tr>
<tr>
<td>EPC2002</td>
<td>シングル</td>
<td>65</td>
<td>480</td>
<td>0.133</td>
<td>0.057</td>
<td>0.015</td>
<td>0.344</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>EPC2009</td>
<td>シングル</td>
<td>65</td>
<td>130</td>
<td>0.37</td>
<td>0.12</td>
<td>0.055</td>
<td>0.94</td>
<td>0</td>
<td>4</td>
<td>7.5</td>
<td>0</td>
</tr>
<tr>
<td>EPC203</td>
<td>シングル：AEC-Q101</td>
<td>80</td>
<td>80</td>
<td>0.67</td>
<td>0.22</td>
<td>0.12</td>
<td>3.6</td>
<td>0</td>
<td>1.7</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>EPC2039</td>
<td>シングル</td>
<td>80</td>
<td>25</td>
<td>1.91</td>
<td>0.76</td>
<td>0.42</td>
<td>7.64</td>
<td>0</td>
<td>6.8</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>EPC2214</td>
<td>シングル</td>
<td>80</td>
<td>20</td>
<td>1.8</td>
<td>0.5</td>
<td>0.3</td>
<td>8</td>
<td>0</td>
<td>10</td>
<td>47</td>
<td>0</td>
</tr>
<tr>
<td>EPC2202</td>
<td>シングル：AEC-Q101</td>
<td>80</td>
<td>17</td>
<td>3.2</td>
<td>1</td>
<td>0.55</td>
<td>18</td>
<td>0</td>
<td>18</td>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td>EPC2103</td>
<td>ハーフブリッジ</td>
<td>80</td>
<td>5.5</td>
<td>6.5</td>
<td>2.2</td>
<td>1.1</td>
<td>30</td>
<td>34</td>
<td>0</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>EPC2029</td>
<td>シングル</td>
<td>80</td>
<td>3.2</td>
<td>13</td>
<td>3.4</td>
<td>1.9</td>
<td>53</td>
<td>0</td>
<td>48</td>
<td>360</td>
<td>0</td>
</tr>
<tr>
<td>EPC2105</td>
<td>ハーフブリッジ</td>
<td>80</td>
<td>14.5</td>
<td>3.6</td>
<td>2.7</td>
<td>11</td>
<td>0.9</td>
<td>3</td>
<td>0.5</td>
<td>2.1</td>
<td>0</td>
</tr>
<tr>
<td>EPC2021</td>
<td>シングル</td>
<td>80</td>
<td>2.5</td>
<td>15</td>
<td>3.4</td>
<td>2.3</td>
<td>63</td>
<td>0</td>
<td>90</td>
<td>420</td>
<td>0</td>
</tr>
<tr>
<td>EPC2006</td>
<td>シングル：AEC-Q101</td>
<td>80</td>
<td>2.2</td>
<td>15</td>
<td>4.1</td>
<td>3</td>
<td>72</td>
<td>0</td>
<td>90</td>
<td>390</td>
<td>0</td>
</tr>
</tbody>
</table>

表のデータは変更されることがあります。www.epc-co.com/epc/jp/製品/eGaNFETとIC.aspxでご確認ください。
<table>
<thead>
<tr>
<th>型番</th>
<th>構成</th>
<th>Vgs (最大)</th>
<th>Rs(on) (@5Vgs)</th>
<th>Qg の標準値</th>
<th>Qgs の標準値</th>
<th>Qgd の標準値</th>
<th>Qoss の標準値</th>
<th>Iq の標準値</th>
<th>IDs のパルス</th>
<th>IDs のパッケージ</th>
<th>開発基板</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPC2038</td>
<td>ゲート・ダイオード付きシングル</td>
<td>100</td>
<td>3300</td>
<td>0.044</td>
<td>0.02</td>
<td>0.004</td>
<td>0.134</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
<td>EPC9507</td>
</tr>
<tr>
<td>EPC2037</td>
<td>シングル</td>
<td>100</td>
<td>550</td>
<td>0.115</td>
<td>0.032</td>
<td>0.025</td>
<td>0.6</td>
<td>0</td>
<td>1.7</td>
<td>2.4</td>
<td>EPC9051</td>
</tr>
<tr>
<td>EPC2107</td>
<td>同期ブート付きデュアル</td>
<td>100</td>
<td>390</td>
<td>0.19</td>
<td>0.044</td>
<td>0.077</td>
<td>0.02</td>
<td>0.041</td>
<td>0.004</td>
<td>0.9/1.25</td>
<td>EPC9063</td>
</tr>
<tr>
<td>EPC2010</td>
<td>シングル</td>
<td>100</td>
<td>160</td>
<td>0.36</td>
<td>0.13</td>
<td>0.06</td>
<td>2.2</td>
<td>0</td>
<td>4</td>
<td>7.5</td>
<td>EPC9030</td>
</tr>
<tr>
<td>EPC2036</td>
<td>シングル</td>
<td>100</td>
<td>73</td>
<td>0.7</td>
<td>0.17</td>
<td>0.14</td>
<td>3.9</td>
<td>0</td>
<td>1.7</td>
<td>18</td>
<td>EPC9050</td>
</tr>
<tr>
<td>EPC2106</td>
<td>ハーフブリッジ</td>
<td>100</td>
<td>70</td>
<td>0.73</td>
<td>0.24</td>
<td>0.140</td>
<td>3.96</td>
<td>1.46</td>
<td>0</td>
<td>1.7/18</td>
<td>EPC9055</td>
</tr>
<tr>
<td>EPC2008C</td>
<td>シングル</td>
<td>100</td>
<td>30</td>
<td>1.6</td>
<td>0.6</td>
<td>0.3</td>
<td>8.3</td>
<td>0</td>
<td>6</td>
<td>40</td>
<td>EPC9006C</td>
</tr>
<tr>
<td>EPC2051</td>
<td>シングル</td>
<td>100</td>
<td>25</td>
<td>1.7</td>
<td>0.6</td>
<td>0.3</td>
<td>7.3</td>
<td>0</td>
<td>1.7</td>
<td>37</td>
<td>EPC9091</td>
</tr>
<tr>
<td>EPC2016C</td>
<td>シングル</td>
<td>100</td>
<td>16</td>
<td>3.4</td>
<td>1.1</td>
<td>0.55</td>
<td>16</td>
<td>0</td>
<td>18</td>
<td>75</td>
<td>EPC9010C</td>
</tr>
<tr>
<td>EPC2212</td>
<td>シングル：AEC-Q101</td>
<td>100</td>
<td>13.5</td>
<td>3.2</td>
<td>0.9</td>
<td>0.6</td>
<td>18</td>
<td>0</td>
<td>18</td>
<td>75</td>
<td>EPC9010C</td>
</tr>
<tr>
<td>EPC2052</td>
<td>シングル</td>
<td>100</td>
<td>13.5</td>
<td>3.6</td>
<td>1.5</td>
<td>0.5</td>
<td>13</td>
<td>0</td>
<td>8.2</td>
<td>74</td>
<td>EPC9092</td>
</tr>
<tr>
<td>EPC2045</td>
<td>シングル</td>
<td>100</td>
<td>7</td>
<td>5.9</td>
<td>1.9</td>
<td>0.8</td>
<td>25</td>
<td>0</td>
<td>16</td>
<td>130</td>
<td>EPC9078</td>
</tr>
<tr>
<td>EPC2001C</td>
<td>シングル</td>
<td>100</td>
<td>7</td>
<td>7.5</td>
<td>2.4</td>
<td>1.2</td>
<td>31</td>
<td>0</td>
<td>36</td>
<td>150</td>
<td>EPC9002C</td>
</tr>
<tr>
<td>EPC2104</td>
<td>ハーフブリッジ</td>
<td>100</td>
<td>6.8</td>
<td>6.8</td>
<td>2.3</td>
<td>1.4</td>
<td>35</td>
<td>41</td>
<td>0</td>
<td>30/180</td>
<td>EPC9040</td>
</tr>
<tr>
<td>EPC2032</td>
<td>シングル</td>
<td>100</td>
<td>4</td>
<td>12</td>
<td>3</td>
<td>2</td>
<td>66</td>
<td>0</td>
<td>48</td>
<td>340</td>
<td>EPC9062</td>
</tr>
<tr>
<td>EPC2053</td>
<td>シングル</td>
<td>100</td>
<td>3.8</td>
<td>12</td>
<td>4.1</td>
<td>1.5</td>
<td>45</td>
<td>0</td>
<td>48</td>
<td>246</td>
<td>EPC9093</td>
</tr>
<tr>
<td>EPC2022</td>
<td>シングル</td>
<td>100</td>
<td>3.2</td>
<td>13.2</td>
<td>3.4</td>
<td>2.4</td>
<td>71</td>
<td>0</td>
<td>90</td>
<td>390</td>
<td>EPC9035</td>
</tr>
<tr>
<td>EPC2110</td>
<td>デュアル共通ソース</td>
<td>120</td>
<td>110</td>
<td>0.8</td>
<td>0.25</td>
<td>0.18</td>
<td>4</td>
<td>0</td>
<td>3.4/20</td>
<td>EPC9058</td>
<td></td>
</tr>
<tr>
<td>EPC2115</td>
<td>デュアル集積化ドライGaN FET</td>
<td>150</td>
<td>88</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.1</td>
<td>0</td>
<td>3.4</td>
<td>18</td>
<td>EPC9088</td>
</tr>
<tr>
<td>EPC2033</td>
<td>シングル</td>
<td>150</td>
<td>7</td>
<td>12</td>
<td>3.8</td>
<td>3.2</td>
<td>90</td>
<td>0</td>
<td>48/260</td>
<td>EPC9047</td>
<td></td>
</tr>
<tr>
<td>EPC2012C</td>
<td>シングル</td>
<td>200</td>
<td>100</td>
<td>1</td>
<td>0.3</td>
<td>0.2</td>
<td>10</td>
<td>0</td>
<td>5</td>
<td>22</td>
<td>EPC9004C</td>
</tr>
<tr>
<td>EPC2019</td>
<td>シングル</td>
<td>200</td>
<td>50</td>
<td>1.8</td>
<td>0.6</td>
<td>0.35</td>
<td>18</td>
<td>0</td>
<td>8.5/42</td>
<td>EPC9014</td>
<td></td>
</tr>
<tr>
<td>EPC2112</td>
<td>集積化ドライGaN FET</td>
<td>200</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.7</td>
<td>0</td>
<td>6.8/40</td>
<td>EPC9089</td>
<td></td>
</tr>
<tr>
<td>EPC2010C</td>
<td>シングル</td>
<td>200</td>
<td>25</td>
<td>3.7</td>
<td>1.3</td>
<td>0.7</td>
<td>40</td>
<td>0</td>
<td>22/90</td>
<td>EPC9003C</td>
<td></td>
</tr>
<tr>
<td>EPC2034</td>
<td>シングル</td>
<td>200</td>
<td>10</td>
<td>8.8</td>
<td>3</td>
<td>1.8</td>
<td>75</td>
<td>0</td>
<td>48/200</td>
<td>EPC9048</td>
<td></td>
</tr>
</tbody>
</table>

表のデータは変更されることがあります。www.epc-co.com/epc/jp/製品/eGaNFETとIC.aspxでご確認ください。

学習曲線を進展
テクノロジー・ブリーフ: TB001 eGaN® 技術

アプリケーション

- ワイヤレス・パワー: eGaN FETとICは周波数6.78 MHzに最適
- 包絡線追跡: RFパワー・アンプの効率を倍増
- LiDAR（光による検出と距離の測定）: 大電流で短いパルス幅=高解像度画像
- D級オーディオ: より良い音質で小型
- DC-DCコンバータ: より高い電力密度
- POL（負荷点）コンバータ: より高速な過渡応答で高効率

eGaN FETとICの利用可能なデモ・ボード:

<table>
<thead>
<tr>
<th>型番</th>
<th>概要</th>
<th>フォーカス</th>
<th>搭載製品</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPC9138</td>
<td>バック・コンバータ: 48 V入力で12 V、20 A出力</td>
<td>DC-DC</td>
<td>EPC2053</td>
</tr>
<tr>
<td>EPC9141</td>
<td>700 Wバック・コンバータ: 48 V入力で12 V、10 A出力</td>
<td>DC-DC</td>
<td>EPC2045</td>
</tr>
<tr>
<td>EPC9130</td>
<td>500 Wの1/8ブリック・コンバータ: 48 V入力で12 V、42 A出力</td>
<td>DC-DC</td>
<td>EPC2021 / EPC2020</td>
</tr>
<tr>
<td>EPC9013</td>
<td>100 Wの大電流パルス・レーザー・ダイオード用ドライバのデモ・ボード</td>
<td>LiDAR</td>
<td>EPC2016C</td>
</tr>
<tr>
<td>EPC9126</td>
<td>10 Wのクラス2ワイヤレス・パワーキット</td>
<td></td>
<td>EPC2001C</td>
</tr>
<tr>
<td>EPC9127</td>
<td>10 Wのクラス3ワイヤレス・パワーキット</td>
<td></td>
<td>EPC2017 / EPC2036 / EPC2019</td>
</tr>
<tr>
<td>EPC9129</td>
<td>33 Wのクラス4ワイヤレス・パワーキット</td>
<td></td>
<td>EPC2017 / EPC2036 / EPC2019</td>
</tr>
<tr>
<td>EPC9121</td>
<td>10 Wのマルチモード・ワイヤレス・パワーキット</td>
<td></td>
<td>EPC2014C / EPC2007C / EPC2038</td>
</tr>
<tr>
<td>EPC9111 / EPC9112</td>
<td>ZVS の D級ワイヤレス・デモ・キット</td>
<td></td>
<td>EPC2019</td>
</tr>
<tr>
<td>EPC950x</td>
<td>カテゴリー3(SW) / カテゴリー10（W）のワイヤレス・パワー無線受信器</td>
<td></td>
<td>各種</td>
</tr>
<tr>
<td>EPC90513 / EPC90515</td>
<td>カテゴリー3(SW) / カテゴリー10（W）のワイヤレス・パワー無線受信器</td>
<td></td>
<td>EPC2019</td>
</tr>
<tr>
<td>EPC9106</td>
<td>250 W/4ΩのD級オーディオ・アンプ</td>
<td></td>
<td>EPC2016C</td>
</tr>
</tbody>
</table>

開発基板とデモ回路は、製品を市場に投入するまでの時間を短縮します。

詳細について

info@epc-co.com に電子メールで、または、お近くの販売代理店にお尋ねください。
EPCのウェブサイト: epc-co.com/epc/jp
bit.ly/EPCupdates に登録、または 22828 に「EPC」とテキストフィルすば、EPCの最新情報を受信できます

EPC – GaN技術のリーダー | WWW.EPC-CO.COM/EPJ | COPYRIGHT 2019 |
チップ寸法

より良いパワー・パッケージ:

- 両面放熱によって熱特性が向上
- 低インダクタンスによって高速スイッチングが可能
- プラスチック・パッケージを使わずにで、サイズとコストが削減され、信頼性が向上

FETとICの実際の大きさ（ページ印刷時）