eGaN® FET DATASHEET **EPC2014C**

EPC2014C – Enhancement Mode Power Transistor

 V_{DS} , 40 V $R_{DS(on)}$, $~16~m\Omega$ I_D, 10 A

Revised May 22, 2021

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low R_{DS(on)}, while its lateral device structure and majority carrier diode provide exceptionally low Q_{G} and zero Q_{RR} . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

	Maximum Ratings				
	PARAMETER	VALUE	UNIT		
V	Drain-to-Source Voltage (Continuous)		V		
v _{DS}	V _{DS} Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)				
	Continuous ($T_A = 25$ °C, $R_{\theta JA} = 43$ °C/W)	10	Α		
I _D	Pulsed (25°C, $T_{PULSE} = 300 \mu s$)	60	A		
V	Gate-to-Source Voltage		V		
V _{GS}	Gate-to-Source Voltage	-4	V		
Tر	Operating Temperature -40 to 150		°C		
T _{STG}	Storage Temperature	-40 to 150			

	Thermal Characteristics				
	PARAMETER	ТҮР	UNIT		
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	3.6			
R _{OJB} Thermal Resistance, Junction-to-Board		9.3	°C/W		
R _{OJA}	Thermal Resistance, Junction-to-Ambient (Note 1)	80			

 $Note 1: R_{\theta JA} \ is \ determined \ with the \ device \ mounted \ on \ one \ square \ inch \ of \ copper \ pad, \ single \ layer \ 2 \ oz \ copper \ on \ FR4 \ board.$ See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

	Static Characteristics ($T_j = 25^{\circ}$ C unless otherwise stated)					
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, I}_{D} = 125 \mu\text{A}$	40			٧
I _{DSS}	Drain-Source Leakage	$V_{GS} = 0 \text{ V}, V_{DS} = 32 \text{ V}$		50	100	μΑ
	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$		0.4	2	mA
I _{GSS}	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		50	100	μΑ
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 2 \text{ mA}$	0.8	1.4	2.5	V
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V}, I_D = 10 \text{ A}$		12	16	mΩ
V_{SD}	Source-Drain Forward Voltage#	$V_{GS} = 0 \text{ V, } I_S = 0.5 \text{ A}$		1.8		V

Defined by design. Not subject to production test.

All measurements were done with substrate connected to source.

Die size: 1.7 x 1.1 mm

EPC2014C eGaN® FETs are supplied only in passivated die form with solder bumps.

Applications

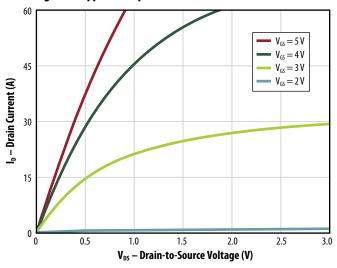
- High frequency DC-DC conversion
- · Class-D audio
- · Wireless power transfer
- Lidar

Benefits

- · Ultra high efficiency
- Ultra low R_{DS(on)}
- Ultra low Q_G
- · Ultra small footprint

Scan OR code or click link below for more information including reliability reports, device models, demo boards!

https://l.ead.me/EPC2014C


EPC2014C eGaN® FET DATASHEET

	Dynamic Characteristics# (T _J = 25°C unless otherwise stated)					
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
C _{ISS}	Input Capacitance			220	300	
C _{RSS}	Reverse Transfer Capacitance	$V_{GS} = 0 \text{ V}, V_{DS} = 20 \text{ V}$		6.5	9.5	pF
C _{OSS}	Output Capacitance			150	210	
R_{G}	Gate Resistance			0.4		Ω
Q _G	Total Gate Charge	$V_{GS} = 5 \text{ V}, V_{DS} = 20 \text{ V}, I_D = 10 \text{ A}$		2	2.5	
Q _{GS}	Gate-to-Source Charge			0.7		
Q_{GD}	Gate-to-Drain Charge $V_{DS} = 20 \text{ V}, I_D = 10 \text{ A}$			0.3	0.5	-C
Q _{G(TH)}	Gate Charge at Threshold			0.5		nC
Qoss	Output Charge	$V_{GS} = 0 \text{ V}, V_{DS} = 20 \text{ V}$		4	6	
Q _{RR}	Source-Drain Recovery Charge			0		

[#] Defined by design. Not subject to production test.

All measurements were done with substrate connected to source.

Figure 1: Typical Output Characteristics

Figure 2: Typical Transfer Characteristics

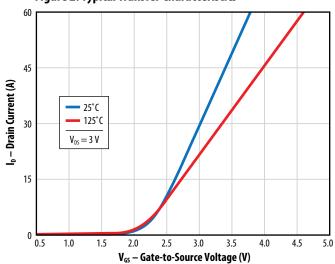


Figure 3: Typical $R_{\text{DS(on)}}\,\text{vs. V}_{\text{GS}}$ for Various Drain Currents

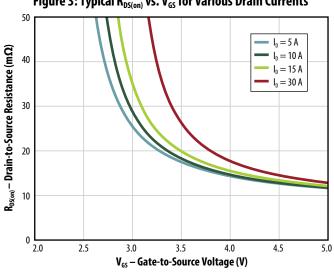
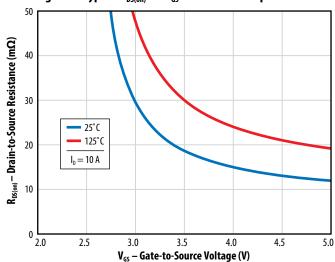



Figure 4: Typical R_{DS(on)} vs. V_{GS} for Various Temperatures

Note 2: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

Note 3: $C_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

eGaN® FET DATASHEET EPC2014C

Figure 5a: Typical Capacitance 300 250 **Capacitance (pF)**100 100 $C_{OSS} = C_{GD} + C_{SD}$ $C_{ISS} = C_{GD} + C_{GS}$ 50 10 25 30 35 15 20 40 V_{DS} - Drain-to-Source Voltage (V)

Figure 5b: Typical Capacitance

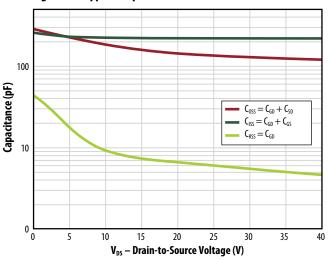


Figure 6: Typical Gate Charge

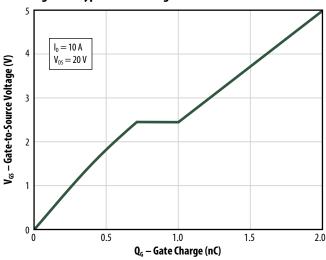
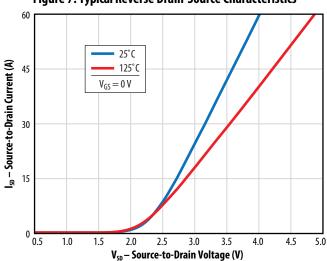
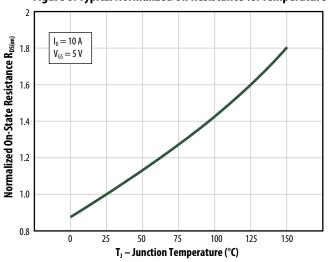
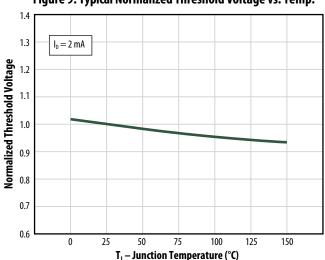
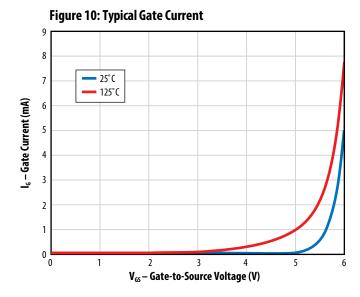
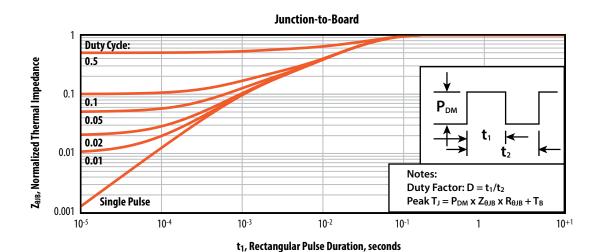



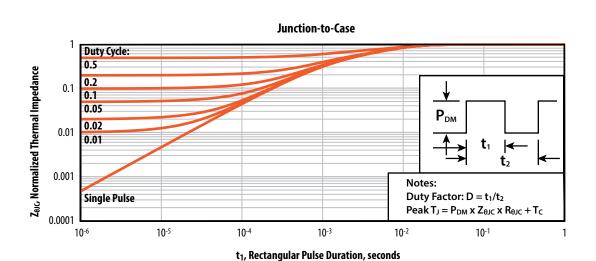
Figure 7: Typical Reverse Drain-Source Characteristics

Note: Negative gate drive voltage increases the reverse drain-source voltage. EPC recommends 0 V for OFF.

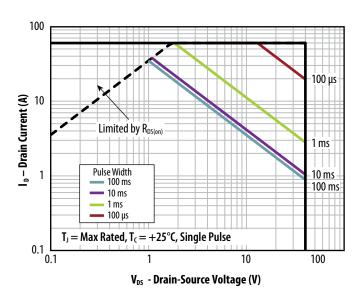
Figure 8: Typical Normalized On Resistance vs. Temperature

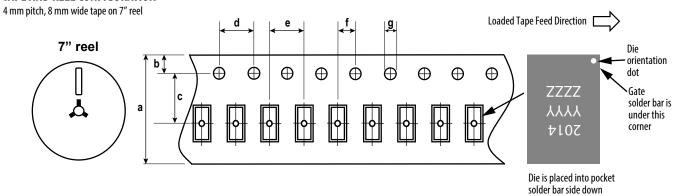





Figure 9: Typical Normalized Threshold Voltage vs. Temp.



eGaN® FET DATASHEET EPC2014C


Figure 11: Typical Transient Thermal Response Curves



EPC2014C eGaN® FET DATASHEET

Figure 12: Safe Operating Area

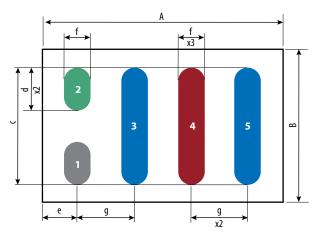
TAPE AND REEL CONFIGURATION

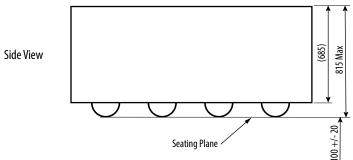
	EPC2014C (note 1)		
Dimension (mm)	target	min	max
а	8.00	7.90	8.30
b	1.75	1.65	1.85
c (note 2)	3.50	3.45	3.55
d	4.00	3.90	4.10
е	4.00	3.90	4.10
f (note 2)	2.00	1.95	2.05
g	1.5	1.5	1.6

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/JEDEC industry standard. Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

(face side down)

DIE MARKINGS 2014 **YYYY** Die orientation dot ZZZZ Gate Pad bar is


under this corner


Part		Laser Markings	Markings arkings	
Number	Part # Marking Line 1	Lot_Date Code Marking line 2	Lot_Date Code Marking Line 3	
EPC2014C	2014	YYYY	ZZZZ	

eGaN® FET DATASHEET **EPC2014C**

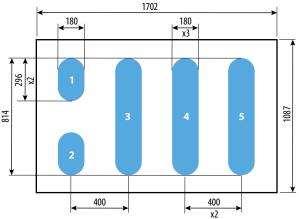
DIE OUTLINE

Solder Bar View

DIM	MICROMETERS			
DIM	MIN	Nominal	MAX	
A	1672	1702	1732	
В	1057	1087	1117	
C	829	834	839	
d	311	316	321	
e	235	250	265	
f	195	200	205	
g	400	400	400	

Pad no. 1 is Gate;

Pad no. 2 is Substrate;*


Pads no. 3 and 5 are Drain;

Pad no. 4 is Source

*Substrate pin should be connected to Source

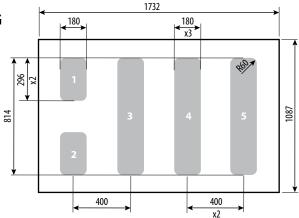
RECOMMENDED LAND PATTERN

(measurements in μ m)

The land pattern is solder mask defined.

Pad no. 1 is Gate;

Pad no. 2 is Substrate;*


Pads no. 3 and 5 are Drain;

Pad no. 4 is Source

*Substrate pin should be connected to Source

RECOMMENDED STENCIL DRAWING

(units in μ m)

Recommended stencil should be 4 mil (100 µm) thick, must be laser cut, opening per drawing. The corner has a radius of R60.

Intended for use with SAC305 Type 4 solder, reference 88.5% metals content.

Additional assembly resources available at https://epc-co.com/epc/design-support

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. eGaN® is a registered trademark of Efficient Power Conversion Corporation.

EPC Patent Listing: https://epc-co.com/epc/about-epc/patents

Information subject to change without notice.