EPC2110 – Dual Common-Source Enhancement-Mode GaN Power Transistor

V_{DS}, 120 V
$R_{DS(on)}$, 110 mΩ
I_D, 3.4 A

Gallium Nitride’s exceptionally high electron mobility and low temperature coefficient allows very low $R_{DS(on)}$, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR}. The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Maximum Ratings of Q1 & Q2

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DS} (Drain-to-Source Voltage (Continuous))</td>
<td>120</td>
<td>V</td>
</tr>
<tr>
<td>I_D (Continuous ($T_A = 25^\circ C, R_{JA} = 52^\circ C/W$))</td>
<td>3.4</td>
<td>A</td>
</tr>
<tr>
<td>I_D (Pulsed ($25^\circ C, T_{PULSE} = 300 \mu s$))</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>V_{GS} (Gate-to-Source Voltage)</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>T_J (Operating Temperature)</td>
<td>–40 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

EPC2110 eGaN® FETs are supplied only in passivated die form with solder bumps
Die Size: 1.35 mm x 1.35 mm

Applications
- Ultra High Frequency DC-DC Conversion
- Wireless Power Transfer
- Synchronous Rectification

Benefits
- Ultra High Efficiency
- Ultra Low $R_{DS(on)}$
- Ultra Low Q_G
- Ultra Small Footprint

www.epc-co.com/epc/Products/eGaNFETsandICs/EPC2110.aspx

Thermal Characteristics of Q1 & Q2

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TYP</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{BIC} (Thermal Resistance, Junction-to-Case)</td>
<td>3</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{BIB} (Thermal Resistance, Junction-to-Board)</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>R_{JJA} (Thermal Resistance, Junction-to-Ambient (Note 1))</td>
<td>81</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: R_{JJA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board.
See https://epc-co.com/epc/documents/product-training/Appnote_Termal_Performance_of_eGaN_FETs.pdf for details

Static Characteristics of Q1 & Q2 ($T_J = 25^\circ C$ unless otherwise stated)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV_{DSS} (Drain-to-Source Voltage)</td>
<td>$V_{GS} = 0 V, I_D = 0.3 mA$</td>
<td>120</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{DSS} (Drain-Source Leakage)</td>
<td>$V_{DS} = 96 V, V_{GS} = 0 V$</td>
<td>0.01</td>
<td>0.25</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I_{GSS} (Gate-to-Source Forward Leakage)</td>
<td>$V_{GS} = 5 V$</td>
<td>0.05</td>
<td>1</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>$V_{GS(TH)}$ (Gate Threshold Voltage)</td>
<td>$V_{DS} = V_{GS}, I_D = 0.7 mA$</td>
<td>0.8</td>
<td>1.4</td>
<td>2.5</td>
<td>V</td>
</tr>
<tr>
<td>$R_{DS(on)}$ (Drain-Source On Resistance)</td>
<td>$V_{GS} = 5 V, I_D = 4 A$</td>
<td>80</td>
<td>110</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>V_{SD} (Source-Drain Forward Voltage)</td>
<td>$I_S = 0.5 A, V_{GS} = 0 V$</td>
<td></td>
<td>1.9</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>
Dynamic Characteristics of Q1 & Q2 (TJ = 25°C unless otherwise stated)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{ISS}</td>
<td>Input Capacitance</td>
<td>85</td>
<td>100</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>C_{RSS}</td>
<td>Reverse Transfer Capacitance</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{OSS}</td>
<td>Output Capacitance</td>
<td>45</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{OSS(ER)}</td>
<td>Effective Output Capacitance, Energy Related (Note 2)</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{OSS(TR)}</td>
<td>Effective Output Capacitance, Time Related (Note 3)</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{G}</td>
<td>Gate Resistance</td>
<td>0.6</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Q_{G}</td>
<td>Total Gate Charge</td>
<td>0.8</td>
<td>1.1</td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>Q_{GS}</td>
<td>Gate to Source Charge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_{GD}</td>
<td>Gate to Drain Charge</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_{G(TH)}</td>
<td>Gate Charge at Threshold</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_{OSS}</td>
<td>Output Charge</td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_{RR}</td>
<td>Source-Drain Recovery Charge</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 2: C_{OSS(ER)} is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% B_{VDS}.
Note 3: C_{OSS(TR)} is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% B_{VDS}.

EPC2110 – Detailed Schematic

Note: The EPC2110 can be connected in parallel or used as independent FETs with common source.
Figure 1 (Q1 & Q2): Typical Output Characteristics at 25°C

Figure 2 (Q1 & Q2): Transfer Characteristics

Figure 3 (Q1 & Q2): $R_{\text{DS(\text{on})}}$ vs. V_{GS} for Various Drain Currents

Figure 4 (Q1 & Q2): $R_{\text{DS(\text{on})}}$ vs. V_{GS} for Various Temperatures

Figure 5a (Q1 & Q2): Capacitance (Linear Scale)

Figure 5b (Q1 & Q2): Capacitance (Log Scale)
Figure 10 (Q1 & Q2): Normalized Threshold Voltage vs. Temperature

![Normalized Threshold Voltage vs. Temperature](image)

- **Normalized Threshold Voltage vs. Temperature**
- **TJ – Junction Temperature (°C)**
- **Id = 0.7 mA**

Figure 9 (Q1 & Q2): Normalized On-State Resistance vs. Temperature

![Normalized On-State Resistance vs. Temperature](image)

- **Normalized On-State Resistance R_{DS(on)}**
- **TJ – Junction Temperature (°C)**
- **Id = 4 A**
- **VGS = 5 V**
- **VDS = 60 V**

Figure 8: Reverse Drain-Source Characteristics

![Reverse Drain-Source Characteristics](image)

- **ISD – Source-to-Drain Current (A)**
- **VSD – Source-to-Drain Voltage (V)**
- **25˚C**
- **125˚C**
- **VGS = 0 V**
- **VDS = 3 V**
- **Id = 4 A**
- **VDS = 60 V**

Figure 7 (Q1 & Q2): Gate Charge

![Gate Charge](image)

- **QG – Gate Charge (pC)**
- **VGS – Gate-to-Source Voltage (V)**
- **QG = 4 A**
- **VGS = 60 V**

Figure 6 (Q1 & Q2): Output Charge and C_{oss} Stored Energy

![Output Charge and C_{oss} Stored Energy](image)

- **QOSS – Output Charge (nC)**
- **EOSS – C_{oss} Stored Energy (µJ)**
- **VDS – Drain-to-Source Voltage (V)**
- **QOSS = 4 A**
- **VDS = 60 V**

Figure 6a: Output Charge and COSS Stored Energy

![Output Charge and COSS Stored Energy](image)

- **QOSS – Output Charge (nC)**
- **EOSS – COSS Stored Energy (µJ)**
- **VDS – Drain-to-Source Voltage (V)**
- **QOSS = 4 A**
- **VDS = 60 V**

Figure 5: Reverse Drain-Source Characteristics

![Reverse Drain-Source Characteristics](image)

- **ID – Source-to-Drain Current (A)**
- **VSD – Source-to-Drain Voltage (V)**
- **25˚C**
- **125˚C**
- **VGS = 0 V**
- **VSD = 3 V**
- **Id = 4 A**
- **VDS = 60 V**

Figure 4: Gate Charge

![Gate Charge](image)

- **QG – Gate Charge (pC)**
- **VGS – Gate-to-Source Voltage (V)**
- **QG = 4 A**
- **VGS = 60 V**

Figure 3: Normalized Output Charge

![Normalized Output Charge](image)

- **QOSS – Output Charge (nC)**
- **EOSS – COSS Stored Energy (µJ)**
- **VDS – Drain-to-Source Voltage (V)**
- **QOSS = 4 A**
- **VDS = 60 V**

Figure 2: Normalized Gate Charge

![Normalized Gate Charge](image)

- **QG – Gate Charge (pC)**
- **VGS – Gate-to-Source Voltage (V)**
- **QG = 4 A**
- **VGS = 60 V**

Figure 1: Normalized Drain Current vs. Temperature

![Normalized Drain Current vs. Temperature](image)

- **ID – Source-to-Drain Current (A)**
- **VSD – Source-to-Drain Voltage (V)**
- **25˚C**
- **125˚C**
- **VGS = 0 V**
- **VSD = 3 V**
- **Id = 4 A**
- **VDS = 60 V**

Figure 1: Normalized Drain Current vs. Temperature

![Normalized Drain Current vs. Temperature](image)

- **ID – Source-to-Drain Current (A)**
- **VSD – Source-to-Drain Voltage (V)**
- **25˚C**
- **125˚C**
- **VGS = 0 V**
- **VSD = 3 V**
- **Id = 4 A**
- **VDS = 60 V**
Notes:
- Duty Factor: $D = \frac{t_1}{t_2}$
- Peak $T_J = P_{DM} \times Z_{\theta JB} \times R_{\theta JB} + T_B$

Notes:
- Duty Factor: $D = \frac{t_1}{t_2}$
- Peak $T_J = P_{DM} \times Z_{\theta JC} \times R_{\theta JC} + T_C$

Figure 11a (Q1 & Q2): Transient Thermal Response Curves (Junction-to-Board)

Figure 11b (Q1 & Q2): Transient Thermal Response Curves (Junction-to-Case)

Figure 12 (Q1 & Q2): Safe Operating Area
DIE MARKINGS

Die orientation dot
Pin 1 is under this corner

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Laser Markings</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPC2110</td>
<td>2110 YYYY ZZZZ</td>
</tr>
</tbody>
</table>

TAPE AND REEL CONFIGURATION

4mm pitch, 8mm wide tape on 7” reel

<table>
<thead>
<tr>
<th>Dimension (mm)</th>
<th>EPC2110 (note 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>8.00 7.90 8.30</td>
</tr>
<tr>
<td>b</td>
<td>1.75 1.65 1.85</td>
</tr>
<tr>
<td>c (see note)</td>
<td>3.50 3.45 3.55</td>
</tr>
<tr>
<td>d</td>
<td>4.00 3.90 4.10</td>
</tr>
<tr>
<td>e</td>
<td>4.00 3.90 4.10</td>
</tr>
<tr>
<td>f (see note)</td>
<td>2.00 1.95 2.05</td>
</tr>
<tr>
<td>g</td>
<td>1.5 1.5 1.6</td>
</tr>
</tbody>
</table>

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/JEDEC industry standard.
Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.
DIE OUTLINE

Solder Bump View

- Pad 1 is Gate 1;
- Pad 7 is Gate 2;
- Pads 2, 3 are Drain 1;
- Pads 8, 9 are Drain 2;
- Pads 4, 6 are Source;
- Pad 5 is Substrate*

*Substrate pin should be connected to Source

Side View

Seating Plane

<table>
<thead>
<tr>
<th>DIM</th>
<th>Micrometers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
</tr>
<tr>
<td>A</td>
<td>1320</td>
</tr>
<tr>
<td>B</td>
<td>1320</td>
</tr>
<tr>
<td>c</td>
<td>450</td>
</tr>
<tr>
<td>d</td>
<td>210</td>
</tr>
<tr>
<td>e</td>
<td>187</td>
</tr>
</tbody>
</table>

RECOMMENDED LAND PATTERN

(measurements in µm)

- The land pattern is solder mask defined
- Solder mask is 10 µm smaller per side than bump

RECOMMENDED STENCIL DRAWING

(measurements in µm)

- Recommended stencil should be 4 mil (100 µm) thick, must be laser cut, openings per drawing.

- Intended for use with SAC305 Type 4 solder, reference 88.5% metals content.

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN® is a registered trademark of Efficient Power Conversion Corporation.

EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx

Information subject to change without notice.

Revised May, 2020