eGaN® FET DATASHEET

EPC2215 – Enhancement Mode Power Transistor

V_{DS}, 200 V
$R_{DS(on)}$, 8 mΩ
I_D, 32 A

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low $R_{DS(on)}$, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR}. The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Maximum Ratings

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DS} Drain-to-Source Voltage (Continuous)</td>
<td>200</td>
<td>V</td>
</tr>
<tr>
<td>I_D Continuous ($T_A = 25°C$)</td>
<td>32</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed ($25°C$, $T_{PULSE} = 300 \mu s$)</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>V_{GS} Gate-to-Source Voltage</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>Gate-to-Source Voltage</td>
<td>-4</td>
<td></td>
</tr>
<tr>
<td>T_J Operating Temperature</td>
<td>-40 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>T_{STG} Storage Temperature</td>
<td>-40 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Characteristics

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TYP</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{OJC} Thermal Resistance, Junction-to-Case</td>
<td>0.5</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{OJB} Thermal Resistance, Junction-to-Board</td>
<td>2.5</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{OJA} Thermal Resistance, Junction-to-Ambient (Note 1)</td>
<td>52</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: R_{OJA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

Static Characteristics ($T_J = 25°C$ unless otherwise stated)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B V_{DSS}$ Drain-to-Source Voltage</td>
<td>$V_{GS} = 0 V, I_D = 0.6 mA$</td>
<td>200</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{SSS} Drain-Source Leakage</td>
<td>$V_{GS} = 0 V, V_{DS} = 160 V$</td>
<td></td>
<td>0.15</td>
<td>0.48</td>
<td>mA</td>
</tr>
<tr>
<td>I_{GS} Gate-to-Source Forward Leakage</td>
<td>$V_{GS} = 5 V$</td>
<td></td>
<td>0.03</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>Gate-to-Source Forward Leakage*</td>
<td>$V_{GS} = 5 V, T_J = 125°C$</td>
<td></td>
<td>0.5</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>Gate-to-Source Reverse Leakage</td>
<td>$V_{GS} = -4 V$</td>
<td></td>
<td>0.15</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>$V_{GS(TH)}$ Gate Threshold Voltage</td>
<td>$V_{DS} = V_{GS}, I_D = 6 mA$</td>
<td>0.8</td>
<td>1.1</td>
<td>2.5</td>
<td>V</td>
</tr>
<tr>
<td>$R_{DS(on)}$ Drain-Source On Resistance</td>
<td>$V_{GS} = 5 V, I_D = 20 A$</td>
<td></td>
<td>6</td>
<td>8</td>
<td>mΩ</td>
</tr>
<tr>
<td>V_{SD} Source-Drain Forward Voltage</td>
<td>$I_S = 0.5 A, V_{GS} = 0 V$</td>
<td></td>
<td>1.6</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

* Defined by design. Not subject to production test.
Dynamic Characteristics (TJ = 25°C unless otherwise stated)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>Typ</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciss</td>
<td>VDS = 100 V, VGS = 0 V</td>
<td>1356</td>
<td>1790</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Cress</td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooss</td>
<td></td>
<td>390</td>
<td>585</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooss(ER)</td>
<td>VDS = 0 to 100 V, VGS = 0 V</td>
<td>556</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooss(TR)</td>
<td></td>
<td>699</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RG</td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>QG</td>
<td>VDS = 100 V, VGS = 5 V, ID = 20 A</td>
<td>13.6</td>
<td>17.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qgs</td>
<td></td>
<td>3.3</td>
<td></td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>Qgd</td>
<td>VDS = 100 V, ID = 20 A</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qg(TH)</td>
<td></td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qoss</td>
<td>VDS = 100 V, VGS = 0 V</td>
<td>69</td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qrr</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defined by design. Not subject to production test.

Note 2: Cooss(ER) is a fixed capacitance that gives the same stored energy as Cooss while VGS is rising from 0 to 50% BVDS.

Note 3: Cooss(TR) is a fixed capacitance that gives the same charging time as Cooss while VGS is rising from 0 to 50% BVDS.
Figure 5a: Capacitance (Linear Scale)

\[V_{DS} \rightarrow \text{Drain-to-Source Voltage (V)} \]

\[\text{Capacitance (pF)} \]

\[\begin{array}{c}
0 & 200 \\
100 & 1200 \\
150 & 1400 \\
200 & 1600 \\
\end{array} \]

\[C_{OSS} = C_{GD} + C_{DS} \]
\[C_{ISS} = C_{GD} + C_{GS} \]
\[C_{RSS} = C_{GD} \]

Figure 5b: Capacitance (Log Scale)

\[V_{DS} \rightarrow \text{Drain-to-Source Voltage (V)} \]

\[\text{Capacitance (pF)} \]

\[\begin{array}{c}
0 & 1000 \\
100 & 10000 \\
150 & 100000 \\
200 & 1000000 \\
\end{array} \]

Figure 6: Output Charge and \(C_{OSS} \) Stored Energy

\[V_{DS} \rightarrow \text{Drain-to-Source Voltage (V)} \]

\[Q_{OSS} \rightarrow \text{Output Charge (nC)} \]

\[E_{OSS} \rightarrow \text{COSS Stored Energy (µJ)} \]

Figure 7: Gate Charge

\[V_{GS} \rightarrow \text{Gate-to-Source Voltage (V)} \]

\[Q_{G} \rightarrow \text{Gate Charge (nC)} \]

\[\begin{array}{c}
0 & 5 \\
1 & 4 \\
2 & 3 \\
3 & 2 \\
4 & 1 \\
\end{array} \]

\[\begin{array}{c}
0 & 1.6 \\
1.0 & 2.0 \\
1.5 & 3.2 \\
2.0 & 4.8 \\
2.5 & 6.4 \\
3.0 & 8.0 \\
\end{array} \]

ID = 20 A
V_{DS} = 100 V

Figure 8: Reverse Drain-Source Characteristics

\[V_{DS} \rightarrow \text{Source-to-Drain Voltage (V)} \]

\[I_{SD} \rightarrow \text{Source-to-Drain Current (A)} \]

\[\begin{array}{c}
0 & 0.5 \\
0.5 & 1.0 \\
1.0 & 1.5 \\
1.5 & 2.0 \\
2.0 & 2.5 \\
2.5 & 3.0 \\
3.0 & 3.5 \\
3.5 & 4.0 \\
4.0 & 4.5 \\
4.5 & 5.0 \\
\end{array} \]

\[\begin{array}{c}
0 & 20 \\
0.5 & 40 \\
1.0 & 60 \\
1.5 & 80 \\
2.0 & 100 \\
2.5 & 120 \\
3.0 & 140 \\
3.5 & 160 \\
\end{array} \]

ID = 20 A
V_{DS} = 0 V

Figure 9: Normalized On-State Resistance vs. Temperature

\[\begin{array}{c}
0 & 25 \\
25 & 50 \\
50 & 75 \\
75 & 100 \\
100 & 125 \\
125 & 150 \\
\end{array} \]

\[\begin{array}{c}
0 & 0.8 \\
0.5 & 1.0 \\
1.0 & 1.2 \\
1.5 & 1.4 \\
2.0 & 1.6 \\
\end{array} \]

\[\begin{array}{c}
ID = 20 A \quad V_{GS} = 5 V \\
\end{array} \]
Figure 10: Normalized Threshold Voltage vs. Temperature

Figure 11: Safe Operating Area

Figure 12: Transient Thermal Response Curves

- **Junction-to-Board**

 - **Notes:**
 - Duty Factor: \(D = \frac{t_1}{t_2} \)
 - Peak \(T_J = P_{DM} \times Z_{θJB} \times R_{θJB} + T_B \)

- **Junction-to-Case**

 - **Notes:**
 - Duty Factor: \(D = \frac{t_1}{t_2} \)
 - Peak \(T_J = P_{DM} \times Z_{θJC} \times R_{θJC} + T_C \)
DIE MARKINGS

Die orientation dot

Gate Pad bump is under this corner

Part Number

<table>
<thead>
<tr>
<th>Laser Markings</th>
<th>Part # Marking Line 1</th>
<th>Lot_Date Code Marking Line 2</th>
<th>Lot_Date Code Marking Line 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPC2215</td>
<td>2215</td>
<td>YYYY</td>
<td>ZZZZ</td>
</tr>
</tbody>
</table>

Die Outline

Solder Bump View

Seating plane

Tape and Reel Configuration

4 mm pitch, 12 mm wide tape on 7" reel

Die Outline

Solder Bump View

Seating plane

Dimension (mm)

<table>
<thead>
<tr>
<th>EPC2215 (Note 1)</th>
<th>Target</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>12.00</td>
<td>11.90</td>
<td>12.30</td>
</tr>
<tr>
<td>b</td>
<td>1.75</td>
<td>1.65</td>
<td>1.85</td>
</tr>
<tr>
<td>c (Note 2)</td>
<td>5.50</td>
<td>5.45</td>
<td>5.55</td>
</tr>
<tr>
<td>d</td>
<td>4.00</td>
<td>3.90</td>
<td>4.00</td>
</tr>
<tr>
<td>e</td>
<td>4.00</td>
<td>3.90</td>
<td>4.00</td>
</tr>
<tr>
<td>f (Note 2)</td>
<td>2.00</td>
<td>1.95</td>
<td>2.05</td>
</tr>
<tr>
<td>g</td>
<td>1.50</td>
<td>1.50</td>
<td>1.60</td>
</tr>
<tr>
<td>h</td>
<td>1.50</td>
<td>0.95</td>
<td>1.05</td>
</tr>
</tbody>
</table>

Note 1: A moisture sensitivity level (MSL) classified according to IPC/JEDEC industry standard.

Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.
RECOMMENDED LAND PATTERN

(units in µm)

Recommended stencil should be 4 mil (100 µm) thick, must be laser cut, openings per drawing.

The corner has a radius of R60.

Intended for use with SAC305 Type 3 solder, reference 88.5% metals content.

Split stencil design can be provided upon request, but EPC has tested this stencil design and not found any scooping issues.

Additional assembly resources available at https://epc-co.com/epc/DesignSupport/AssemblyBasics.aspx

DIM

<table>
<thead>
<tr>
<th></th>
<th>Nominal</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4600</td>
</tr>
<tr>
<td>B</td>
<td>1600</td>
</tr>
<tr>
<td>c</td>
<td>1210</td>
</tr>
<tr>
<td>d</td>
<td>1450</td>
</tr>
<tr>
<td>e</td>
<td>1000</td>
</tr>
<tr>
<td>f</td>
<td>275</td>
</tr>
<tr>
<td>g</td>
<td>450</td>
</tr>
<tr>
<td>h</td>
<td>700</td>
</tr>
<tr>
<td>j</td>
<td>875</td>
</tr>
</tbody>
</table>

RECOMMENDED STENCIL DRAWING

(units in µm)

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN® is a registered trademark of Efficient Power Conversion Corporation.

EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx

Information subject to change without notice.

Revised November, 2020