

Using Test-to-Fail Methodology to Accurately Predict How eGaN Devices Can Last More Than 25 Years in Solar Applications

Why Test-to-fail?

Stressor	Device/ Package	Test Method	Instrinsic Failure Mechanism
		HTCP	Dielectric failure (TDDB)
		нов	Threshold Shift
Voltage	Device		Threshold Shift
		нікв	R _{DS(on)} Shift
		ESD	Dielectric rupture
Current	Dovico	DC Current (EM)	Electromigration
Current	Device	De current (EWI)	Thermomigration
Current + Voltage	Device	SOA	Thermal Runaway
(Power)	Device	Short Circuit	Thermal Runaway
Voltage Rising/Falling	Device	Hard-switching reliability	R _{DS(on)} Shift
Current	Davias	Pulsed Current	Nama faund
Rising/Falling	Device	(Lidar reliability)	None found
Temperature	Package	HTS	None found
		MSL1	None found
		H3TRB	None found
Humidity	Package	AC	None found
numary	Fackage	Solderability	Solder corrosion
		uHAST	Dentrite Formation/Corrosion
		тс	Solder Fatigue
		IOL	Solder Fatigue
Mechanical/		Bending force test	Delamination
Thermo-	Package	Bending Force Test	Solder Strength
mechanical		Bending Force Test	Piezoelectric Effects
		Die shear	Solder Strength
		Package force	Film Cracking

EPC – POWER CONVERSION TECHNOLOGY LEADER

Popular Topology in Solar: Micro-Inverter Micro-Micro-Micro-Micro-LV DC LV DC LV DC LV DC Inverter Inverter Inverter Inverter AC grid

EPC's Low voltage eGaN solution (V_{DSMax} < 200V) is a good fit for this solar application

EPC's Low voltage eGaN solution (V_{DSMax} < 200V) is a good fit for this solar application

Main Stressors in Solar

- Gate Bias
- Drain Bias
- Temperature Cycling (TC)
- Exposure to Cosmic Rays (Radiation)

Gate Bias

Gate-Source Voltage Stress

EPC – POWER CONVERSION TECHNOLOGY LEADER

Weibull Analysis of Accelerated Gate Test Data Sheet Maximum = 6V V_{GS}

Gate Failures Not in GaN

Gate Wear-out Mechanism: Impact Ionization

Impact Ionization Model Development

Electron-hole pair generation rate from impact ionization

 $G = \alpha_n \frac{|J_n|}{q} + \alpha_p \frac{|J_p|}{q}$ $G \approx \alpha_n \frac{|J_n|}{q} \qquad J_n >> J_p$

Ionization coefficient

$$\alpha_n = a_n e^{-(b_n/F)^m} [15]$$

Temperature dependence (Ozbek) $a_n(T) = a_{n;0}(1 - c\Delta T)$ [13]

 $c = 6.5 x 10^{-3} K^{-1}$

Ref	a _n (1/cm)	b _n (V/cm)	m
Ji et al.[12]	2.10E+09	3.70E+07	1
Ozbek [13]	9.20E+05	1.70E+07	1
Cao et al. [8]	4.48E+08	3.40E+07	1
Ooi et al. [15]	7.32E+07	7.16E+06	1.9

$$MTTF = \frac{Q_c}{G} = \frac{qQ_c}{\alpha_n J_n} = \frac{A}{(1 - c\Delta T)} exp\left[\left(\frac{B}{V + V_0}\right)^m\right] \xrightarrow{m = 1.9}_{V_0 = 1.0 V}_{B = 57.0 V}_{A = 1.7 \times 10^{-6} s}_{c = 6.5 \times 10^{-3} K^{-1}}$$

Gate Reliability and Lifetime Projection

<1ppm failure rate
projected over more
than 35 years of lifetime
under continuous V_{GS}=6V
DC gate bias (maximum
rated V_{GS})

Drain Bias

Drain-Source Voltage Stress

Physics of R_{DS(on)} Shift – Hot Carrier Emission

EPC – POWER CONVERSION TECHNOLOGY LEADER

Hard-Switching: Effect of VIN

Hot Carrier Trapping Mechanism

Hot Carrier Trapping Model

$$f(E)dE \propto Ee^{-E/qF\lambda}dE \qquad \frac{dQ_S}{dt} = A \int_{\Phi_{bi}+\beta Q_S}^{\infty} f(E)dE = A \int_{\Phi_{bi}+\beta Q_S}^{\infty} Ee^{-E/qF\lambda}dE \qquad \frac{dQ_S}{dt} = B \exp\left(-\frac{\beta Q_S}{qF\lambda}\right)$$

$$Q_{S}(t) = \frac{qF\lambda}{\beta} \log\left(1 + \frac{B\beta}{qF\lambda}t\right) \qquad R(t) = R_{0} + \frac{C}{Q_{P} - Q_{S}} = R_{0} + \frac{C}{Q_{P} - \frac{qF\lambda}{\beta}\log\left(1 + \frac{B\beta}{qF\lambda}t\right)}$$

$$R(t) \approx R_0 + \frac{C}{Q_P} \left[1 + \frac{qF\lambda}{Q_P\beta} \log\left(1 + \frac{B\beta}{qF\lambda}t\right) \right] \qquad \tau_{LO} \propto exp\left(\frac{\hbar\omega_{LO}}{kT}\right) \quad \lambda = v_{th}\tau_{LO} \propto A\sqrt{kT}exp\left(\frac{\hbar\omega_{LO}}{kT}\right)$$

$$\frac{\Delta R}{R} = \frac{R(t) - R(0)}{R(0)} \approx a + bF \exp\left(\frac{\hbar\omega_{LO}}{kT}\right) \sqrt{T} \log(t)$$

Model vs Measurement

Apply the Model to Project Lifetime for Solar Mission Profile

Microinverter Flyback Topology

Part Number	Size (mm x mm)	V _{DS} (V)	R _{DS(on)} max (mΩ)	Q _G Typ (nC)	Q _{RR} Typ (nC)	
EPC2059	2.8 x 1.4	170	9	5.7	0	
EPC2305*	3 x 5 QFN	150	3	21	0	*.5
EPC2308*	3 x 5 QFN	150	6	10	0	

* Sampling

Drain Bias: Flyback Topology for Solar

- EPC2059 (170V V_{DSMax}) eGaN FET is a good fit for Flyback
- A representative EPC2059 device was tested under continuous hard switching at 100 kHz and 137V (80% V_{DSMax}) with case temperature of 80°C

Function	Part Number	Size (mm x mm)	V _{DS} (V)	R _{DS(on)} max (mΩ)	Q _G typ (nC)	Q _{RR} typ (nC)
Primary	EPC2218	3.5 x 1.95	100	3.2	11.8	0
Primary	EPC2302	3 x 5 QFN	100	1.8	18	0
Primary	EPC2306*	3 x 5 QFN	100	3.8	11	0

Drain Bias: Full Bridge Topology for Solar

- EPC2218 (100V $V_{\text{DSMax}})$ eGaN FET is a good fit
- A representative EPC2218 device was tested under continuous hard switching at 100 kHz and 80V (80% V_{DSMax})

Temperature Cycling (TC)

Board Level TC of EPC2218A (100V eGaN transistor)

- TC1: -40°C to 125°C
 - Without underfill, 88 devices
 - With underfill, 88 devices
- TC2 : -40°C to 105°C
 - Without underfill, 88 devices

Development of Lifetime Model for TC

For EPC2218A using SAC305 solder: $\alpha = -1/3$; $\beta = 2.0$; $E_a = 0.2 \text{ eV}$

- 1. B. Han , Y. Guo, "Determination of an Effective Coefficient of Thermal Expansion of Electronic Packaging Components: A Whole-Field Approach," IEEE TRANSACTIONS ON COMPONENTS, PACKAGING. AND MANUFACTURING TECHNOLOGY-PART A, VOL. 19, NO. 2, JUNE 1996
- 2. Automotive Electronics Council, "FAILURE MECHANISM BASED STRESS TEST QUALIFICATION FOR DISCRETE SEMICONDUCTORS IN AUTOMOTIVE APPLICATIONS", AEC-Q101-Rev E, March 2021
- 3. Norris, K. C., & Landzberg, A. H., "Reliability of Controlled Collapse Interconnections", IBM Journal of Research and Development, 13(3), pp. 266–271, 1969
- 4. Vasudevan, V., and Fan, X., "An Acceleration Model for Lead-Free (SAC) Solder Joint Reliability Under Thermal Cycling," ECTC, pp. 139–145, 2008

EPC – POWER CONVERSION TECHNOLOGY LEADER

Temperature Cycling of EPC2218A (100V eGaN transistor)

1% of failure rate:

- With underfill ΔT of 95°C
- Without underfill ∆T of ~50°C

0.1% of failure rate:

 With underfill - ∆T of ~73°C

Apply the TC Lifetime Model to Real-world Scenarios

a, b, ... i = the factional lifetime of each mission profile

 $N_{\Delta Ti}$ = No of cycles-to-failure for a given mission profile

The most stringent mission profile $(N_{\Delta Ti})$ dominates the overall lifetime (N_{Total})

Predict Lifetime in a Real-world Scenario

10

Weather history for Phoenix, Arizona

Average temperature

N_{total} at Phoenix, AZ is estimated to be 10,971 70 cycles (10ppm failure rate), equivalent of 60 ~30 years of 50 continuous operation 40 30 Self Heating (30°C) 20 **Ambient Temperature**

EPC – POWER CONVERSION TECHNOLOGY L

Exposure to Cosmic Rays

Why does cosmic ray matter to solar panels?

- Devices used in solar panels are subjected to gamma and neutron radiation
 - There are no known failure mechanisms for EPC eGaN device as tested up to 100 Mrad (Si)
 - Terrestrial neutrons are more massive and can cause displacement damage

IDSS I_{GSS} 1E-03 100E-06 100E-06

1.0E+15

1.0E+16

1.0E+14

1.0E+14

Neutron Fluence (n-cm²)

1.0E+15

1.0E+16

values tested up to 4X10¹⁵ neutron fluence (n-cm²)

8E-03

7E-03

6E-03

Pre-Exposure

EPC – POWER CONVERSION TECHNOLOGY LEADER

Average I_{cos} (A)

10E-06

1E-06

100E-09

The detailed study for GaN in Solar is published in our latest phase 15 reliability test report <u>Reliability Report Phase 15 (epc-co.com)</u>

37

Thank you!

