National Taiwan University

Emerging Applications for GaN Transistors

Alex Lidow
Efficient Power Conversion Corporation
November 2012
Agenda

• Why Gallium Nitride?
• Hard Switched Converters
 • Envelope Tracking
• High Frequency Resonant Converters
 • Wireless Power
• Summary
Why Gallium Nitride?

• Enhancement-Mode devices available (eGaN® FETs)
• $R_{DS(ON)}$ per unit area much smaller than silicon power MOSFET
• Much faster switching
• Very low capacitance (C_G, C_{ISS}, C_{OSS})
• No parasitic PN junction body ($Q_{RR}=0$)
eGaN® FET Structure

- AlGaN Electron Generating Layer
- Dielectric
- Two Dimensional Electron Gas (2DEG)
- Aluminum Nitride Isolation Layer
Hard Switched Converters
Example: Buck Converter

- **Drive Circuit**
 - \(V_L \)
 - \(Q1 \)
 - \(V_a \)
 - \(L1 \)
 - \(V_O \)
 - \(R_L \)
 - \(C \)
 - \(R_C \)
 - \(R \)

Graphs

- **Hard switching:**
 - Rise time \(~2.5\) ns
 - Peak \(dV/dt \) \(~30\) V/\(ns \)

- **Inductor current waveform**
 - Inverted, \(~8\) A load

- **Soft switching:**
 - Fall time \(~4\) ns
 - Switching time is load dependent
Ls: Common Source Inductance

L_loop: High Frequency Power Loop Inductance

V_in = 12 V, V_out = 1.2 V, F_s = 1 MHz, I_out = 20 A
Packaging Evolution

Device Loss Breakdown

- **V\textsubscript{IN} = 12V**
- **V\textsubscript{OUT} = 1.2V**
- **I\textsubscript{OUT} = 20A**
- **F\textsubscript{S} = 1MHz**

- **Power Loss (W)**
 - **So-8**: 18%
 - **LFPAK**: 27%
 - **DirectFET**: 47%
 - **LGA**: 82%

Efficiency (%) vs. Switching Frequency (MHz)

- **So-8**
- **LFPAK**
- **DirectFET**
- **eGaN**

EPC - The Leader in eGaN® FETs
National Taiwan University 2012
www.epc-co.com
Layout Impact on Efficiency

Experimental Efficiency

\[\text{Efficiency} (\%) \]

\[\text{Output Current} (I_{\text{OUT}}) \]

\[L_{\text{Loop}} \approx 2.9 \text{nH} \]
\[L_{\text{Loop}} \approx 1.6 \text{nH} \]
\[L_{\text{Loop}} \approx 1.0 \text{nH} \]

\[V_{\text{IN}} = 12 \text{ V}, \quad V_{\text{OUT}} = 1.2 \text{ V}, \]
\[F_S = 1 \text{ MHz}, \quad L = 150 \text{ nH} \]
Peak Voltage Comparison

Voltage Overshoot (%) vs. High Frequency Loop Inductance (L_{LOOP})

$V_{\text{IN}}=12\,\text{V}$, $V_{\text{OUT}}=1.2\,\text{V}$, $F_S=1\,\text{MHz}$, $L=150\,\text{nH}$
Envelope Tracking
RF Transmission

- Peak efficiency up to 65%
- Average efficiency only 25%

Output Power (dBm)

PA Efficiency (%)

Fixed supply

Output Probability

Average Power

Peak Power

Average efficiency only 25%
Effect of ET

Average efficiency
~50% (incl. ET)

Envelope Tracking

Average Power

Output Probability

Output Power (dBm)

PA Efficiency (%)
Linear-Assisted Buck ET
45 V$_{\text{IN}}$ 22 V$_{\text{OUT}}$

![Graph showing efficiency and power loss vs. output power for 4 MHz and 1 MHz operations.](image)
4MHz Loss Breakdown

Power Loss (W)

- Inductor
- Qoss
- Switching
- Gate drive
- Conduction

Top eGaN FET | Bottom eGaN FET | Other

Power Loss:
- Top eGaN FET: 5.0
- Bottom eGaN FET: 1.5
- Other: 2.5
Resonant Converters
eGaN® FET vs MOSFET

- Resonant Capacitor
- Secondary Devices
- Transformer
- Primary Devices
- Input Capacitors
Duty Cycle Comparison

\[D_{\text{MOSFET}} = 34\% \]
\[D_{\text{eGaN}} = 42\% \]

\[F_S = 1.2 \text{ MHz}, \ V_{IN} = 48 \text{ V}, \text{ and } V_{OUT} = 12 \text{ V} \]
Efficiency Comparison

1.2 MHz eGaN FET

1.2 MHz MOSFET

\[F_S = 1.2 \text{ MHz}, \ V_{IN} = 48 \text{ V}, \text{ and } V_{OUT} = 12 \text{ V} \]
Loss Breakdown

Power Loss (W)

- Gate Drive
- Transformer Core
- Conduction + Turn Off

F_S = 1.2 MHz, V_IN = 48 V, and V_OUT = 12 V
Wireless Power
Wireless Power
Wireless Power
Wireless Power

[Diagram showing wireless power transfer setup with labels:
- Coil Feedback
- eGaN FETs RF connection
- Device Coil
- Device Board
- Source Board
- MOSFET RF connection
- Source Coil
- RF connection]
Efficiency Comparison

Efficiency [%]

6.639 MHz, 23.6 Ω load

- $V_{in} = 8\, V$
 $V_{out} = 6.8\, V$

- $V_{in} = 22\, V$
 $V_{out} = 18.2\, V$

- $V_{in} = 22\, V$
 $V_{out} = 18.3\, V$

- $V_{in} = 8\, V$
 $V_{out} = 6.9\, V$

EPC - The Leader in eGaN® FETs
National Taiwan University 2012

www.epc-co.com
Loss Breakdown

Power Loss Break Down 22 V supply, 15 W load

- eGaN FET
- MOSFET
- Ind. Coil
- Rectifier

Power [W]

- FET Cond.
- FET SW.
- Gate Driver
- Pri. Coil
- Sec. Coil
- Rect. Cond.
- Rect. Cap.
Summary

• eGaN FETs operate efficiently in multi-megahertz envelope tracking systems which can reduce transmit power by 50%.
• eGaN FETs reduce power losses by 25% or more in 1.2 MHz resonant DC-DC converters.
• eGaN FETs reduce power losses by 25% in 6.78 MHz wireless power transmission systems.
• You can always improve efficiency with eGaN FETs!
The end of the road for silicon..... is the beginning of the eGaN FET journey!