Performance Comparison for A4WP Class-3 Wireless Power Compliance between eGaN® FET and MOSFET in a ZVS Class D Amplifier
Agenda

• Introduction to the A4WP Class-3 Specifications
• ZVS Class D Amplifier
• eGaN® FET versus MOSFET Comparison
• Synchronous Bootstrap FET Gate Driver
• Experimental Results
• Summary

eGaN® is a registered trademark of Efficient Power Conversion Corporation
Introduction

• Wireless power transfer solutions must address convenience-of-use such as: device orientation and distance, multiple device capability, user simplicity, and power.

• Only the Alliance for Wireless Power (A4WP / Rezence) standard does:
 • Highly resonant (6.78 MHz ISM band)
 • Loosely coupled coils
 • Operation off-resonance

• ZVS Class D amplifier will be tested to the Class-3 requirements
A4WP Class-3 Impedance Requirements

- Load Variation Arcs
- 1 +10j Ω
- On Resonance
- Matched Coil
- Unloaded Coil Arc
- 50 Ω Smith Chart
- Increasing Coil Inductance
- Full Load Arc
- Impedance Rotation permissible
- 55 +10j Ω
- 55 -150j Ω
- 1 -150j Ω
- Decreasing Coil Inductance
ZVS Class D Amplifier

- Switch voltage rating = Supply (V_{DD}).
- C_{OSS} Voltage is transitioned by the ZVS tank
- ZVS tank circuit does not carry load current
- Coil Voltage $= \frac{\sqrt{2}}{\pi} \cdot V_{DD} \ [V_{RMS}]$

Ideal Waveforms
Ultra High Frequency eGaN FETs

- Proven in various wireless power transfer amplifiers
- Low C_{ISS}
- Low C_{OSS}
- Zero Q_{RR}
- Full dv/dt immunity

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package (mm)</th>
<th>V_{DS} (V)</th>
<th>V_{GS} (V)</th>
<th>$R_{DS(on)}$ @5 V (mΩ)</th>
<th>Q_G @5 V Typ. (pC)</th>
<th>Q_{GS} Typ. (pC)</th>
<th>Q_{GD} Typ. (pC)</th>
<th>R_G Typ. (Ω)</th>
<th>V_{th} Typ. (V)</th>
<th>Q_{RR} (nC)</th>
<th>I_D (A)</th>
<th>T_J Max. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPC8004</td>
<td>LGA 2.05x0.85</td>
<td>40</td>
<td>6</td>
<td>125</td>
<td>358</td>
<td>110</td>
<td>31</td>
<td>0.34</td>
<td>1.4</td>
<td>0</td>
<td>2.7</td>
<td>150</td>
</tr>
<tr>
<td>EPC8009</td>
<td>LGA 2.05x0.85</td>
<td>65</td>
<td>6</td>
<td>138</td>
<td>380</td>
<td>116</td>
<td>36</td>
<td>0.3</td>
<td>1.4</td>
<td>0</td>
<td>2.7</td>
<td>150</td>
</tr>
<tr>
<td>EPC8010</td>
<td>LGA 2.05x0.85</td>
<td>100</td>
<td>6</td>
<td>160</td>
<td>354</td>
<td>109</td>
<td>32</td>
<td>0.3</td>
<td>1.4</td>
<td>0</td>
<td>2.7</td>
<td>150</td>
</tr>
</tbody>
</table>

- 2.05 x 0.85 mm
- Gate Return
- Source
- Substrate (Connect to Source on PWB)

- Proven in various wireless power transfer amplifiers
- Low CISS
- Low COSS
- Zero Q_{RR}
- Full dv/dt immunity

EPC - The leader in GaN Technology
Wireless Power Transfer
Figure of Merit

Best-In-Class MOSFET comparison

- All topologies are ZVS: $Q_G - Q_{GD}$
- C_{OSS} is “absorbed” in matching but is important as it:
 - Drives off resonance losses
 - Determines design-ability
- Q_{RR} ignored – poorly defined, amplifier is soft switching, BUT, transition time $< t_{RR}$:
 - eGaN FET $Q_{RR} = 0$ nC
 - MOSFET 2 $Q_{RR} = 18.1$ nC!

\[
FOM_{WPT} = R_{DS(on)} \cdot \left(Q_G - Q_{GD} + Q_{OSS} \right)
\]

(EPC8010 MOSFET 2

FoM$_{WPT}$ [nC·mΩ]
Gate Driver Induced Losses

- Gate drivers with internal bootstrap diodes always have Q_{RR} (schottky diode is very difficult to implement in IC form)
- Bootstrap diode Q_{RR} induces losses in the high side device
 - Q_{RR} losses proportional to frequency
- Present even with ZVS as t_{ZVS} (Switch-node voltage transition time) is shorter than t_{RR}
Synchronous FET Bootstrap

- Q_{BTST} – Bootstrap FET for main switch (Q_1) zero Q_{RR}
- Q_{BTST} – Switches synchronously with Q_2
- No additional active gate driver circuitry needed
- C_{ENH} – Used for level shifting
- D_{ENH} – Bootstrap diode for C_{ENH} (Low voltage < 20V zero Q_{RR})
Load Variation (jΩ) Results

Effect of $Q_{BTST} C_{OSS}$

- 38 % lower
- 24 % lower
- 42% lower

Total Amplifier Losses

Power [W]

Imaginary Impedance [jΩ]

- EPC8010 10 Ω 7 W
- MOSFET 10 Ω 7 W
- EPC8010 36 Ω 16 W
- MOSFET 36 Ω 16 W
- EPC8010 55 Ω 16 W
- MOSFET 55 Ω 16 W
Load Variation (Ω) Results

Total Amplifier Losses

- 15% - 48% lower
- 13% higher
- ~40% lower

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>EPC8010 -30j Ω</td>
<td>P_{out}</td>
</tr>
<tr>
<td>0</td>
<td>MOSFET -30j Ω</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>EPC8010 +20j Ω</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>MOSFET +20j Ω</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>EPC8010 0j Ω</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>MOSFET 0j Ω</td>
<td></td>
</tr>
</tbody>
</table>

EPC - The leader in GaN Technology
Waveform Improvements

$V_{DD} = 45 \text{ V, No load}$

Original Internal Bootstrap Diode

- Q_{RR} effect
- Lower dv/dt
- $\Delta t = 4.2 \text{ ns}$
- $\Delta t = 6.6 \text{ ns}$

HF Output

Oscillator reference

eGaN FET Synchronous Bootstrap FET

- No Q_{RR} effect
- Equal dv/dt
- $\Delta t = 4.2 \text{ ns}$
- $\Delta t = 4.2 \text{ ns}$

Summary

eGaN FETs in a ZVS Class D amplifier were tested to the A4WP Class-3 specifications:

• eGaN FETs always yield higher efficiency than best-in-class MOSFETs
• Gate driver and eGaN FET temperature remain below 100°C
• eGaN FET’s lower C_{OSS} reduces the ZVS current needed, resulting in lower power dissipation for both FET and L_{ZVS}
• eGaN FETs reduce board space by 40%
• eGaN FETs enable a wider impedance drive range than MOSFETs
Handbook on wireless power that covers this work and much more – available at Digi-Key (917-1098-ND)
Where is GaN going...