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Using Test-to-Fail Methodology to 
Predict Lifetime of eGaN® Devices in 

Various Applications
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Why Test-to-fail?  
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Solar 
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Popular Topology in Solar: Micro-Inverter
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EPC’s Low voltage eGaN solution (VDSMax < 200V) 

is a good fit for this solar application
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Popular Topology in Solar: Power Optimizer
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EPC’s Low voltage eGaN solution (VDSMax < 200V) 

is a good fit for this solar application
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DC-DC
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A Common 48 V–12 V Buck Converter 

EPC9158: 48 V/54 V to 12 V, Buck Converter 

using EPC2218 (100V rated eGaN transistor)

100 V rated eGaN devices offer superior efficiency 
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48 V, 1 kW LLC Resonant Converter

Low voltage eGaN devices (VDS,Max≤100V) offer superior efficiency 



10epc-co.comEPC – POWER CONVERSION TECHNOLOGY LEADER

Motor Drives
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Benefits of GaN in Motor

Eliminating dead time leads to less distortion in phase 

current, less vibrations, and less acoustic noise. 

Si: 500 ns dead time at 20 kHz GaN: 14 ns dead time at 20 kHz 
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Benefits of GaN in Motor

Increasing PWM frequency reduces both the input current ripple 

(∆Vpp) and input voltage ripple (∆ID) and smoother phase current.

Si: 500 ns dead time at 20 kHz GaN: 14 ns dead time at 100 kHz 
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Setup Si Inverter

20kHz 500ns dead time

400 RPM 5 Arms

GaN inverter

100kHz 14ns dead time

400 RPM 5 Arms

Input Inductance 2.7 µH None

Input capacitor 660 µF electrolytic 44 µF ceramic

Pin 121.3 W 113.3 W

Pout 119.6 W 111.3 W

ηinverter 98.5% 98.2%

Speed 42.25 rad/s 41.94 rad/s

Torque 1.876 N 1.940 N

Pmech 79.3 W 81.36 W

ηmotor 66.3% 73.1%

η total efficiency 65.3% 71.8%

Benefits of GaN in Motor
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Main Stressors in Various Applications 

• Gate Bias (Solar/DC-DC/Motor Drive)

• Drain Bias (Solar/DC-DC/Motor Drive)

• Temperature Cycling (Solar/DC-DC/Motor Drive)

• Short Circuit (Motor Drive)

• Mechanical Stress (Motor Drive)
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Gate Bias Gate Bias 
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Gate-Source Voltage Stress
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Weibull Analysis of Accelerated Gate Test
Data Sheet Maximum = 6V VGS

Fa
ilu

re
 r

at
e

 



18epc-co.comEPC – POWER CONVERSION TECHNOLOGY LEADER

Metal 1 FP

Dielectric
p-GaN Gate

Gate Metal

Gate Failures Not in GaN
Failure site consistently 

found between Gate Metal 

and Metal 1 field plate
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Gate Wear-out Mechanism: Impact Ionization 

E-field 



20epc-co.comEPC – POWER CONVERSION TECHNOLOGY LEADER

Gate Reliability and Lifetime Projection 

<1ppm failure rate 
projected over more 

than 35 years of lifetime 
under continuous VGS=6V 
DC gate bias (maximum 

rated VGS)

EPC2212
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Gate Bias Drain Bias 
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Drain-Source Voltage Stress

Silicon Substrate

GaN on Silicon

Source Gate

Drain

Field Plate
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Physics of RDS(on) Shift − Hot Carrier Emission
Drain Drain 
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Hot Carrier Trapping Mechanism
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Model vs Measurement
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Apply the Model to Project Lifetime 
for Solar Mission Profile 
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Microinverter Flyback Topology

* Sampling

Part Number Size (mm x mm) VDS (V) RDS(on) max (m) QG Typ (nC) QRRTyp (nC)

EPC2059 2.8 x 1.4 170 9 5.7 0

EPC2305* 3 x 5 QFN 150 3 21 0

EPC2308* 3 x 5 QFN 150 6 10 0
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Drain Bias: Flyback Topology for Solar 

• EPC2059 (170V VDSMax) 
eGaN FET is a good fit for 
Flyback 

• A representative EPC2059 
device was tested under 
continuous hard switching 
at 100 kHz and 137V (80% 
VDSMax) with case 
temperature of 80⁰C
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Projected RDS(ON) shift vs. Time  
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Microinverter Full Bridge Topology (Power Optimizer)

Function Part Number Size (mm x mm) VDS (V) RDS(on) max (m) QG typ (nC) QRR typ (nC)

Primary EPC2218 3.5 x 1.95 100 3.2 11.8 0

Primary EPC2302 3 x 5 QFN 100 1.8 18 0

Primary EPC2306* 3 x 5 QFN 100 3.8 11 0
* Sampling
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• EPC2218 (100V VDSMax) 
eGaN FET is a good fit

• A representative 
EPC2218 device was 
tested under continuous 
hard switching at 100 
kHz and 80V (80% 
VDSMax) 

Drain Bias: Full Bridge Topology for Solar  
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Projected RDS(ON) shift vs. Time  
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Apply the Model to Project Lifetime 
for a Buck Converter
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A Common 48 V–12 V Buck Converter 
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Key Stressor 1: Overvoltage Ringing

Overvoltage ringing can be simulated 

by sinusoidal voltage pulses.    
Simulated turn-off waveform of a 

buck with a peak ringing at 120V  

Bus voltage = 80 V 
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Unclamp inductive switching: 120V Peak Transient Overvoltage 

• 100 kHz frequency 
• 6% duty cycle where RDS(on) is measured in-situ 

Unclamped inductive switching (UIS) circuit is developed to simulate 

the overvoltage ringing at 120V (120% of VDS, Max = 100 V)

VDS,PEAK = 120 V

R. Zhang, R. Garcia, R. Strittmatter, Y. Zhang and S. Zhang, "In-situ RDS(ON) Characterization and Lifetime Projection of GaN HEMTs under 
Repetitive Overvoltage Switching," IEEE Transactions on Power Electronics, doi: 10.1109/TPEL.2023.3290117.
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120V Overvoltage Ringing on EPC2218 (100V rated)

• Three representative EPC2218 devices from 3 different lots 
were tested under 120V peak overvoltage pulses to 1.5 billions 
switching cycles. 

(b)

Lot 1

Lot 2

Lot 3

1.5 billion switching cycles 
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R. Zhang, R. Garcia, R. Strittmatter, Y. Zhang and S. Zhang, "In-situ RDS(ON) Characterization and Lifetime Projection of GaN HEMTs under 
Repetitive Overvoltage Switching," IEEE Transactions on Power Electronics, doi: 10.1109/TPEL.2023.3290117.
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• One representative EPC2302 devices was tested under 120V 
peak overvoltage pulses to ~10 billions switching cycles. 

RDS(on),Max = 1.8 mΩ
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~10 billion switching cycles 

120V Overvoltage Ringing on EPC2302 (100V rated)
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Key Stressor 2: Bus Voltage = 80 V



38epc-co.comEPC – POWER CONVERSION TECHNOLOGY LEADER

• 100 kHz frequency 

• 15% duty cycle where RDS(on) is measured 

in-situ 

Measured VD switching Waveform in Turn-off 

Resistive Load Hard Switching Circuit 

Key Stressor 2: Bus Voltage 

Bus voltage = 80 V 
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Resistive Load Hard Switching Test Results 

• A representative 
EPC2218 and 
EPC2302 were tested 
under continuous hard 
switching at 100 kHz 
and 80V (80% VDSMax). 
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Apply the Drain Lifetime Model to Motor Drives

EPC’s 100V rated (VDS,Max) eGaN solution is a 

good fit for this motor drive application



41epc-co.comEPC – POWER CONVERSION TECHNOLOGY LEADER

• 100 kHz frequency 

• 85% duty cycle (8.5 us) during which the 

GaN FET is Off. 

• 15% duty cycle (1.5 us) during which 

RDS(on) is measured in-situ. 

Measured VD switching Waveform

Resistive Load Hard Switching Circuit 

Bus voltage = 80 V 
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Resistive Load Hard Switching Test Results 

• A representative 
EPC2218 and 
EPC2302 were tested 
under continuous hard 
switching at 100 kHz 
and 80V (80% VDSMax). 
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Going to Extremes

150V

120V

100V

80V
60V

150V, 125 °C

150V, 75 °C
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Temperature Cycling 
(TC) 
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Board Level TC of EPC2218A (100V eGaN transistor)

• TC1: -40°C to 125°C
• With underfill, 88 devices
• Without underfill, 88 

devices

• TC2 : -40°C to 105°C
• Without underfill, 88 

devices
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Development of Lifetime Model for TC 

1. B. Han , Y. Guo, “Determination of an Effective Coefficient of Thermal Expansion of Electronic Packaging Components: A Whole-Field Approach,” IEEE TRANSACTIONS ON COMPONENTS,

PACKAGING. AND MANUFACTURING TECHNOLOGY-PART A, VOL. 19, NO. 2, JUNE 1996

2. Automotive Electronics Council, “FAILURE MECHANISM BASED STRESS TEST QUALIFICATION FOR DISCRETE SEMICONDUCTORS IN AUTOMOTIVE APPLICATIONS”, AEC-Q101-Rev E, March 2021

3. Norris, K. C., & Landzberg, A. H., “Reliability of Controlled Collapse Interconnections”, IBM Journal of Research and Development, 13(3), pp. 266–271, 1969

4. Vasudevan, V., and Fan, X., “An Acceleration Model for Lead-Free (SAC) Solder Joint Reliability Under Thermal Cycling,” ECTC, pp. 139–145, 2008

For EPC2218A using SAC305 solder: 𝛼 = -1/3; 𝛽 = 2.3; 𝐸𝑎 = 0.18 eV

Frequency term: 

No. of cycle/day 

∆T term: 

Solder Fatigue

Arrhenius term: 

Solder Creep
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Temperature Cycling of EPC2218A (100V eGaN transistor)

1% of failure rate: 

• With underfill - ∆T of 95°C 

• Without underfill - ∆T of 
~50°C

0.1% of failure rate: 

• With underfill - ∆T of 
~73°C

TMax = 125°C 
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Apply the TC Lifetime Model to 
Real-world Scenarios (Solar) 
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Estimate Lifetimes in Real-World Scenarios 
Each mission profile

a, b, … i = the factional lifetime of each mission profile 

N∆Ti = No of cycles-to-failure for a given mission profile

The most stringent mission profile (N∆Ti) 

dominates the overall lifetime (NTotal) 
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Predict Lifetime in a Real-world Scenario

50

Ntotal at Phoenix, AZ is 

estimated to be 10,971 

cycles (10ppm failure 

rate),  equivalent of 

~30 years of 
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Apply the TC Lifetime Model to 
Real-world Scenarios (DC-DC) 
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TMax = 125°C

Plot N (cycles-to-fail) vs. ∆T at 
1% failure rate from Test-to-

Fail Weibull. 

∆T (°C)

Lifetime Projection at 1% Failure Rate for EPC2218 with Underfill  
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∆T (°C)

Plot N (cycles-to-fail) vs. ∆T at 
1% failure rate from Test-to-Fail 

Weibull. 

Lifetime Projection at 1% Failure Rate for EPC2218 with Underfill  

TMax = 100°C
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Lifetime Projection at 1% Failure Rate for EPC2218 with Underfill  

• TMax = 75°C

• TMax = 50°C

∆T (°C)
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Short Circuit 
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Short Circuit Test Method and Results  

Fault under load (FUL): drain voltage is applied while gate is ON.

EPC2051 is a 100V rated eGaN transistor 
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Extreme Short Circuit Testing Results 

Under extreme conditions of 500,000 pulses at 85 A, 5 µs pulse width 

(Ipulse,DS=37A), all electrical parameters remained within datasheet limits. 
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Mechanical Stress Induced by 
Motor Movement  
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Bending Test setup

Followed IEC 60068 – 2 – 21 for the bending test 

Surface mounted DUT 

(EPC2302-ish Daisy chain PQFN devices) 
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Bending Test Results 
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No observable resistance shift was found to 2 mm bending 
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Bending Test Results:
Cross-section Results post 2 mm Max Bending 

No solder joint cracking observed!
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Conclusions 
• Gates have very near-zero failure rate when the bias is kept at or 

below the max rated voltage (6V).

• GaN devices are projected to have less than 10% shift over 25 years 
of continuous operation at 80 V bus voltage, 100 kHz. 

• Underfilled CSP GaN devices showed excellent temperature cycling 
capability. 

• A methodology is given to estimate TC lifetime in a real-world 
application for a variety of device sizes. 

• GaN FETs demonstrate extreme robustness under short circuit 
testing.  

• PQFN GaN devices also show good mechanical robustness when 
subjected to board bending stress.  
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Thank you! 
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