GaN Device Reliability Shengke Zhang, Ph.D.

Presented by C.W. Ryu

Using Test-to-Fail Methodology to Predict Lifetime of eGaN[®] Devices in Various Applications

Why Test-to-fail?

Stressor	Device/ Package	Test Method	Instrinsic Failure Mechanism	
		HTCP	Dielectric failure (TDDB)	
	Device	нов	Threshold Shift	
Voltage			Threshold Shift	
		нікв	R _{DS(on)} Shift	
		ESD	Dielectric rupture	
Current	Device	DC Current (EM)	Electromigration	
Current	Device	De current (EW)	Thermomigration	
Current + Voltage	Device	SOA	Thermal Runaway	
(Power)	Device	Short Circuit	Thermal Runaway	
Voltage Rising/Falling	Device	Hard-switching reliability	R _{DS(on)} Shift	
Current		Pulsed Current		
Rising/Falling	Device	(Lidar reliability)	None found	
Temperature	Package	HTS	None found	
		MSL1	None found	
	Package	H3TRB	None found	
Humidity		AC	None found	
number		Solderability	Solder corrosion	
		uHAST	Dentrite Formation/Corrosion	
		тс	Solder Fatigue	
	Package	IOL	Solder Fatigue	
Mechanical/		Bending force test	Delamination	
Thermo-		Bending Force Test	Solder Strength	
mechanical		Bending Force Test	Piezoelectric Effects	
		Die shear	Solder Strength	
		Package force	Film Cracking	

Solar

EPC – POWER CONVERSION TECHNOLOGY LEADER

Popular Topology in Solar: Micro-Inverter Micro-Micro-Micro-Micro-LV DC LV DC LV DC LV DC Inverter Inverter Inverter Inverter AC grid

EPC's Low voltage eGaN solution (V_{DSMax} < 200V) is a good fit for this solar application

EPC's Low voltage eGaN solution (V_{DSMax} < 200V) is a good fit for this solar application

DC-DC

EPC – POWER CONVERSION TECHNOLOGY LEADER

A Common 48 V–12 V Buck Converter

100 V rated eGaN devices offer superior efficiency

EPC9158: 48 V/54 V to 12 V, Buck Converter using EPC2218 (100V rated eGaN transistor)

48 V, 1 kW LLC Resonant Converter

Low voltage eGaN devices ($V_{DS,Max \le 100V}$) offer superior efficiency

EPC9149 board

Figure 1. Power architecture schematic of the 48 V, 1 kW LLC resonant converter.

Motor Drives

EPC – POWER CONVERSION TECHNOLOGY LEADER

epc-co.com 10

Benefits of GaN in Motor

Eliminating dead time leads to less distortion in phase current, less vibrations, and less acoustic noise.

Si: 500 ns dead time at 20 kHz

GaN: 14 ns dead time at 20 kHz

Benefits of GaN in Motor

Increasing PWM frequency reduces both the input current ripple (ΔV_{pp}) and input voltage ripple (ΔI_D) and smoother phase current.

Si: 500 ns dead time at 20 kHz

GaN: 14 ns dead time at 100 kHz

Benefits of GaN in Motor

Setup	Si Inverter	GaN inverter
	20kHz 500ns dead time	100kHz 14ns dead time
	400 RPM 5 Arms	400 RPM 5 Arms
Input Inductance	2.7 μH	None
Input capacitor	660 µF electrolytic	44 µF ceramic
Pin	121.3 W	113.3 W
Pout	119.6 W	111.3 W
η _{inverter}	98.5%	98.2%
Speed	42.25 rad/s	41.94 rad/s
Torque	1.876 N	1.940 N
Pmech	79.3 W 81.36 W	
η _{motor}	66.3%	73.1%
η total efficiency	65.3%	71.8%

Main Stressors in Various Applications

- Gate Bias (Solar/DC-DC/Motor Drive)
- Drain Bias (Solar/DC-DC/Motor Drive)
- Temperature Cycling (Solar/DC-DC/Motor Drive)
- Short Circuit (Motor Drive)
- Mechanical Stress (Motor Drive)

Gate Bias

Gate-Source Voltage Stress

Weibull Analysis of Accelerated Gate Test Data Sheet Maximum = 6V V_{GS}

Gate Failures Not in GaN

Gate Wear-out Mechanism: Impact Ionization

Gate Reliability and Lifetime Projection

<1ppm failure rate
projected over more
than 35 years of lifetime
under continuous V_{GS}=6V
DC gate bias (maximum
rated V_{GS})

Drain Bias

EPC – POWER CONVERSION TECHNOLOGY LEADER

epc-co.com 21

Drain-Source Voltage Stress

Physics of R_{DS(on)} Shift – Hot Carrier Emission

EPC – POWER CONVERSION TECHNOLOGY LEADER

Hot Carrier Trapping Mechanism

$$\frac{\Delta R}{R} = \frac{R(t) - R(0)}{R(0)} \approx a + bF \exp\left(\frac{\hbar\omega_{LO}}{kT}\right) \sqrt{T} \log(t)$$

Model vs Measurement

Apply the Model to Project Lifetime for Solar Mission Profile

Microinverter Flyback Topology

Part Number	Size (mm x mm)	V _{DS} (V)	R _{DS(on)} max (mΩ)	Q _G Typ (nC)	Q _{RR} Typ (nC)	
EPC2059	2.8 x 1.4	170	9	5.7	0	
EPC2305*	3 x 5 QFN	150	3	21	0	*.5
EPC2308*	3 x 5 QFN	150	6	10	0	

* Sampling

EPC – POWER CONVERSION TECHNOLOGY LEADER

Time (min.)

Drain Bias: Flyback Topology for Solar

1.8

0.8

0.6

0.4

0.2

1.6 1.2 1.2 2 2 1.1

Vormalized

- EPC2059 (170V $V_{\text{DSMax}})$ eGaN FET is a good fit for Flyback
- A representative EPC2059 device was tested under continuous hard switching at 100 kHz and 137V (80% V_{DSMax}) with case temperature of 80°C

Function	Part Number	Size (mm x mm)	V _{DS} (V)	R _{DS(on)} max (mΩ)	Q _G typ (nC)	Q _{RR} typ (nC)
Primary	EPC2218	3.5 x 1.95	100	3.2	11.8	0
Primary	EPC2302	3 x 5 QFN	100	1.8	18	0
Primary	EPC2306*	3 x 5 QFN	100	3.8	11	0

Drain Bias: Full Bridge Topology for Solar

- EPC2218 (100V V_{DSMax}) eGaN FET is a good fit
- A representative EPC2218 device was tested under continuous hard switching at 100 kHz and 80V (80% V_{DSMax})

Apply the Model to Project Lifetime for a Buck Converter

A Common 48 V–12 V Buck Converter IN EPC9078/EPC2045 20n L5 Rser=.1m 200p V3 R1 L6 GH 140 48 1n 0.7 120 V4 EPC2045 D1 .ic V(C1)=11.9 .ic I(L1)=10 100 C2 D 5 .ic I(L8)=2.5 Rser=1m L4 4u 80 VD (V) 0 70p L1 60 OUT 00 SW 8.5e-6 40 R2 U2L7 00 C1 'R3 GL 20 1.2 EPC2045 88u Τ 0.7 1n D2 0 ∂ V2L3 -20 D 0 Rser=1m 0 70p $\overline{\mathbf{A}}$ 1p

Overvoltage ringing can be simulated by sinusoidal voltage pulses.

Simulated turn-off waveform of a buck with a peak ringing at 120V

Unclamp inductive switching: 120V Peak Transient Overvoltage

R. Zhang, R. Garcia, R. Strittmatter, Y. Zhang and S. Zhang, "In-situ RDS(ON) Characterization and Lifetime Projection of GaN HEMTs under Repetitive Overvoltage Switching," IEEE Transactions on Power Electronics, doi: 10.1109/TPEL.2023.3290117.

EPC – POWER CONVERSION TECHNOLOGY LEADER

120V Overvoltage Ringing on EPC2218 (100V rated)

 Three representative EPC2218 devices from 3 different lots were tested under 120V peak overvoltage pulses to 1.5 billions switching cycles.

R. Zhang, R. Garcia, R. Strittmatter, Y. Zhang and S. Zhang, "In-situ RDS(ON) Characterization and Lifetime Projection of GaN HEMTs under Repetitive Overvoltage Switching," IEEE Transactions on Power Electronics, doi: 10.1109/TPEL.2023.3290117.

120V Overvoltage Ringing on EPC2302 (100V rated)

 One representative EPC2302 devices was tested under 120V peak overvoltage pulses to ~10 billions switching cycles.

Key Stressor 2: Bus Voltage = 80 V

Key Stressor 2: Bus Voltage

Measured VD switching Waveform in Turn-off

- 100 kHz frequency
- 15% duty cycle where RDS(on) is measured in-situ

Resistive Load Hard Switching Test Results

 A representative EPC2218 and EPC2302 were tested under continuous hard switching at 100 kHz and 80V (80% V_{DSMax}).

Apply the Drain Lifetime Model to Motor Drives

EPC's 100V rated (V_{DS,Max}) eGaN solution is a good fit for this motor drive application

Resistive Load Hard Switching Circuit

Measured VD switching Waveform

- 100 kHz frequency
- 85% duty cycle (8.5 us) during which the GaN FET is Off.
- 15% duty cycle (1.5 us) during which R_{DS(on)} is measured *in-situ*.

Resistive Load Hard Switching Test Results

 A representative EPC2218 and EPC2302 were tested under continuous hard switching at 100 kHz and 80V (80% V_{DSMax}).

Going to Extremes

Temperature Cycling (TC)

Board Level TC of EPC2218A (100V eGaN transistor)

- EFFICIENT POWER CONVERSION
- TC1: -40°C to 125°C
 - With underfill, 88 devices
 - Without underfill, 88 devices
- TC2 : -40°C to 105°C
 - Without underfill, 88 devices

Development of Lifetime Model for TC

For EPC2218A using SAC305 solder: α = -1/3; β = 2.3; E_a = 0.18 eV

- 1. B. Han , Y. Guo, "Determination of an Effective Coefficient of Thermal Expansion of Electronic Packaging Components: A Whole-Field Approach," IEEE TRANSACTIONS ON COMPONENTS, PACKAGING. AND MANUFACTURING TECHNOLOGY-PART A, VOL. 19, NO. 2, JUNE 1996
- 2. Automotive Electronics Council, "FAILURE MECHANISM BASED STRESS TEST QUALIFICATION FOR DISCRETE SEMICONDUCTORS IN AUTOMOTIVE APPLICATIONS", AEC-Q101-Rev E, March 2021
- 3. Norris, K. C., & Landzberg, A. H., "Reliability of Controlled Collapse Interconnections", IBM Journal of Research and Development, 13(3), pp. 266–271, 1969
- 4. Vasudevan, V., and Fan, X., "An Acceleration Model for Lead-Free (SAC) Solder Joint Reliability Under Thermal Cycling," ECTC, pp. 139–145, 2008

EPC – POWER CONVERSION TECHNOLOGY LEADER

Temperature Cycling of EPC2218A (100V eGaN transistor)

1% of failure rate:

- With underfill ΔT of 95°C
- Without underfill ∆T of ~50°C

0.1% of failure rate:

 With underfill - ∆T of ~73°C

Apply the TC Lifetime Model to Real-world Scenarios (Solar)

a, b, ... i = the factional lifetime of each mission profile

 $N_{\Delta Ti}$ = No of cycles-to-failure for a given mission profile

The most stringent mission profile $(N_{\Delta Ti})$ dominates the overall lifetime (N_{Total})

Predict Lifetime in a Real-world Scenario

Weather history for Phoenix, Arizona

Average temperature

N_{total} at Phoenix, AZ is estimated to be 10,971 70 cycles (10ppm failure rate), equivalent of 60 ~30 years of 50 continuous operation 40 30 Self Heating (30°C) 20 **Ambient Temperature** 10

Record temps 50° / 12° C June Avg rainfall 0.3 cm 41 / 23 °CIF Snow 0 days Jan Feb Mar Apr May Jul Aug Sep Oct Nov Dec

Jun

EPC – POWER CONVERSION TECHNOLOGY L

Apply the TC Lifetime Model to Real-world Scenarios (DC-DC)

$$N = A \cdot f^{-\alpha} \cdot \Delta T^{-\beta} \cdot \left(\frac{E_a}{kT_{Max}} \right)$$

Plot N (cycles-to-fail) vs. ∆T at 1% failure rate from Test-to-Fail Weibull.

 10^7 –

$$N = A \cdot f^{-\alpha} \cdot \Delta T^{-\beta} \cdot \left[exp\left(\frac{E_a}{kT_{Max}}\right) \right]$$

$$\bullet T_{Max} = 75^{\circ}C$$

$$\bullet T_{Max} = 50^{\circ}C$$

Short Circuit

EPC – POWER CONVERSION TECHNOLOGY LEADER

epc-co.com 55

Short Circuit Test Method and Results

Fault under load (FUL): drain voltage is applied while gate is ON.

Short-circuit pulse	EPC2051 (Gen 5)		
$V_{DS} = 60 V$	$V_{GS} = 6 V$	$V_{GS} = 5 V$	
Mean TTF (µs)	9.33	21.87	
Std. dev. (µs)	0.21	2.95	
Min. TTF (μs)	9.08	18.53	
Avg pulse power (kW)	3.03	2.03	
Energy (mJ)	27.71	42.49	
Die area (mm²)	1.105		
Avg power/area (kW/mm²)	2.74	1.84	
Energy/area (mJ/mm²)	25.08	38.46	

EPC2051 is a 100V rated eGaN transistor

Extreme Short Circuit Testing Results

Under extreme conditions of 500,000 pulses at 85 A, 5 μ s pulse width (I_{pulse,DS}=37A), all electrical parameters remained within datasheet limits.

EPC2051	t = 0	100 k pulses	500 k pulses
V _{TH} (V)	1.8	2	2.1
I _{GSS} (μΑ)	11	33	55
I _{DSS} (μΑ)	7	5.5	5.1
R _{DS(on)} (mΩ)	22	22.3	22.3
I _{short circuit}	84	77	74

Mechanical Stress Induced by Motor Movement

Bending Test setup

c

S1/S2-OUT

D1-IN D2-IN S1/S2

D1-IN D2-IN S1/S2-OU

S1/S2-OUT

60068-2-21 @ IEC:2006(E)

Followed IEC 60068 - 2 - 21 for the bending test

Figure 9 – Bending Test Set-up acc. IEC 60068-2-21 with additional Notation

D1-IN D2-IN S1/S2

Bending Test Results

No observable resistance shift was found to 2 mm bending

Bending Test Results: Cross-section Results post 2 mm Max Bending

No solder joint cracking observed!

Conclusions

- Gates have very near-zero failure rate when the bias is kept at or below the max rated voltage (6V).
- GaN devices are projected to have less than 10% shift over 25 years of continuous operation at 80 V bus voltage, 100 kHz.
- Underfilled CSP GaN devices showed excellent temperature cycling capability.
- A methodology is given to estimate TC lifetime in a real-world application for a variety of device sizes.
- GaN FETs demonstrate extreme robustness under short circuit testing.
- PQFN GaN devices also show good mechanical robustness when subjected to board bending stress.

Thank you!

EPC – POWER CONVERSION TECHNOLOGY LEADER

