The eGaN® FET Journey Continues

eGaN® FET based Wireless Energy Transfer Using New Zero Voltage Switching Class-D Topology

Efficient Power Conversion Corporation
Agenda

• Wireless Energy Transfer Overview
• Topology Overview
• eGaN® FET Family
• Wireless FET Figure of Merit
• Experimental performance
• Preliminary A4WP Results
• Summary

eGaN® is a registered trademark of Efficient Power Conversion Corporation
Why Wireless Energy

• Mobile device charging
 • Convenience
 • Extended battery life

• Medical Implants
 • Quality of life improvement
 • Life extender

• Hazardous environment systems
 • Explosive atmosphere
 • Corrosive locations
 • High Voltage
Wireless Energy Standards

- Alliance for Wireless Power (A4WP / Rezence)
 - Highly resonant (6.78 MHz ISM band)
 - loosely coupled coils
- Wireless Power Consortium (WPC - Qi)
 - Low frequency (~ 100 - 205 kHz)
 - Tightly coupled (Inductive)
- Power Matters Alliance (PMA)
 - Low frequency (~ 201 - 315 kHz)
 - Tightly coupled (Inductive)
 - Joined with A4WP standard
Wireless System Overview

Comprises 4 main sections:

1. An amplifier (a.k.a. a power converter).
2. A Source coil (transmitter) with matching.
3. A Device coil (receiver) with matching.
4. A rectifier with high frequency filtering
Magnetic Field Wireless Transfer

![Diagram of magnetic field wireless transfer with inductances L_{rp}, L_{mp}, L_{ms}, and L_{rs}.]
Highly Resonant Wireless Transfer

- Coils tuned to resonate at 6.78 MHz
- Series and Shunt tuning can be used
- Coupling and load variation can shift resonance
Challenges to Wireless Energy

• High Efficiency required
 • limited thermal dissipation budget
• Energy Standards
• Low Profile – mobile market
• Robustness to dynamic operating conditions (convenience factor)
 • Load Profile – A4WP (inc. Foreign object)
• Regulatory compliance (e.g. FCC, EN, UL)
Wireless Coil-set Overview

Simplified representation of coil-set for easy comparison between topologies

![Diagram of coil-set with labels: L_{src}, L_{dev}, C_{devs}, L_{devs}, C_{devp}, C_{out}, R_{DCload}, Z_{load}](image)
Class-E Overview

- Switch voltage rating $\geq 3.56 \cdot \text{Supply} (V_{DD})$.
- C_{OSS} “absorbed” into matching network.
- Susceptible to load variation - high FET losses.
- Tuned Coil Voltage $\approx 0.707 \cdot V_{DD} [V_{RMS}]$
ZVS Voltage Mode Class-D*

- Switch voltage rating = Supply (V_{DD}).
- ZVS tank current soft switches C_{OSS} Voltage
- ZVS tank circuit does not carry load current
- Tuned Coil Voltage = $\frac{1}{2} \cdot V_{DD} \cdot [V_{RMS}]$
Differential Versions

- **ZVS Class-D** simplifies with the removal of the ZVS Capacitor
eGaN FET Low Voltage Family

Table

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package (mm)</th>
<th>V(_{DS}) (V)</th>
<th>V(_{GS}) (V)</th>
<th>R(_{DS(on)}) @5V (mΩ)</th>
<th>Q(_{GS}) @5 V Typ. (nC)</th>
<th>Q(_{GD}) Typ. (nC)</th>
<th>R(_{G}) Typ. (Ω)</th>
<th>V(_{th}) Typ. (V)</th>
<th>Q(_{RR}) (nC)</th>
<th>I(_D) Max. (A)</th>
<th>T(_J) Max. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPC2015</td>
<td>LGA 4.1x1.6</td>
<td>40</td>
<td>6</td>
<td>4</td>
<td>10.5</td>
<td>3</td>
<td>2.2</td>
<td>0.6</td>
<td>1.4</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>EPC2014</td>
<td>LGA 1.7x1.1</td>
<td>40</td>
<td>6</td>
<td>16</td>
<td>2.5</td>
<td>0.67</td>
<td>0.48</td>
<td>0.6</td>
<td>1.4</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>EPC2001</td>
<td>LGA 4.1x1.6</td>
<td>100</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>2.3</td>
<td>2.2</td>
<td>0.6</td>
<td>1.4</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>EPC2016</td>
<td>LGA 2.1x1.6</td>
<td>100</td>
<td>6</td>
<td>16</td>
<td>4.1</td>
<td>0.93</td>
<td>0.75</td>
<td>0.6</td>
<td>1.4</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>EPC2007</td>
<td>LGA 1.7x1.1</td>
<td>100</td>
<td>6</td>
<td>30</td>
<td>2.1</td>
<td>0.5</td>
<td>0.6</td>
<td>0.6</td>
<td>1.4</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>EPC2010</td>
<td>LGA 3.6x1.6</td>
<td>200</td>
<td>6</td>
<td>25</td>
<td>5</td>
<td>1.3</td>
<td>1.7</td>
<td>0.6</td>
<td>1.4</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>EPC2012</td>
<td>LGA 1.7x0.9</td>
<td>200</td>
<td>6</td>
<td>100</td>
<td>1.5</td>
<td>0.33</td>
<td>0.57</td>
<td>0.6</td>
<td>1.4</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Solder side View

- **Gate**
- **Drain**
- **Source**
- **Substrate** (Connect to Source on PWB)

Diagram

- **2.1 x 1.6 mm**
- **Connect to Source on PWB**

Package: LGA 4.1x1.6, LGA 1.7x1.1, LGA 4.1x1.6, LGA 2.1x1.6, LGA 1.7x1.1, LGA 3.6x1.6, LGA 1.7x0.9

V\(_{DS}\): 40, 40, 100, 100, 100, 200, 200

V\(_{GS}\): 6, 6, 6, 6, 6, 6, 6

R\(_{DS(on)}\) @5V (mΩ): 4, 16, 7, 16, 30, 25, 100

Q\(_{GS}\) @5 V Typ. (nC): 10.5, 2.5, 8, 4.1, 2.1, 5, 1.5

Q\(_{GD}\) Typ. (nC): 3, 0.67, 2.3, 0.93, 0.5, 1.3, 0.33

R\(_{G}\) Typ. (Ω): 2.2, 0.48, 2.2, 0.75, 0.6, 1.7, 0.57

V\(_{th}\) Typ. (V): 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6

Q\(_{RR}\) (nC): 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4

I\(_D\) Max. (A): 33, 10, 25, 11, 6, 12, 3

T\(_J\) Max. (°C): 150, 150, 125, 125, 125, 125, 125
Ultra High Frequency Gen 3 eGaN FETs

<table>
<thead>
<tr>
<th>EPC Part No.</th>
<th>BV (V)</th>
<th>Max. R<sub>DS(ON)</sub> (mΩ)</th>
<th>Min. Peak Id (A) (Pulsed, 25 °C, T<sub>pulse</sub> = 300 μs)</th>
<th>Typical Charge (pC)</th>
<th>Typical Capacitance (pF) (V<sub>DS</sub> = 20 V; V<sub>GS</sub> = 0 V)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Q<sub>G</sub></td>
<td>Q<sub>GD</sub></td>
</tr>
<tr>
<td>EPC8004</td>
<td>40</td>
<td>125</td>
<td>7.5</td>
<td>358</td>
<td>31</td>
</tr>
<tr>
<td>EPC8007</td>
<td>40</td>
<td>160</td>
<td>6</td>
<td>302</td>
<td>25</td>
</tr>
<tr>
<td>EPC8008</td>
<td>40</td>
<td>325</td>
<td>2.9</td>
<td>177</td>
<td>12</td>
</tr>
<tr>
<td>EPC8009</td>
<td>65</td>
<td>138</td>
<td>7.5</td>
<td>380</td>
<td>36</td>
</tr>
<tr>
<td>EPC8005</td>
<td>65</td>
<td>275</td>
<td>3.8</td>
<td>218</td>
<td>18</td>
</tr>
<tr>
<td>EPC8002</td>
<td>65</td>
<td>530</td>
<td>2</td>
<td>141</td>
<td>9.4</td>
</tr>
<tr>
<td>EPC8003</td>
<td>100</td>
<td>300</td>
<td>5</td>
<td>315</td>
<td>34</td>
</tr>
<tr>
<td>EPC8010</td>
<td>100</td>
<td>160</td>
<td>7.5</td>
<td>354</td>
<td>32</td>
</tr>
</tbody>
</table>

eGaN® is a registered trademark of Efficient Power Conversion Corporation
Gen 4 Datasheet Summary

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Gen</th>
<th>BV (V)</th>
<th>$R_{DS(on)}$ (mΩ) $(V_{gs} = 5V, \text{ at } I_D \text{ Cont.})$</th>
<th>Peak I_D (A) (Pulsed 25°C)</th>
<th>Max T_J</th>
<th>Typical Charge (nC) @ $V_{ds} = BV/2$</th>
<th>Typ R_g (Ω)</th>
<th>Cont. I_D (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPC2023</td>
<td>4</td>
<td>30</td>
<td>1.0 1.3</td>
<td>590 A</td>
<td>150°C</td>
<td>27.5 1.9 5.8 27 0 0.3 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPC2024</td>
<td>4</td>
<td>40</td>
<td>1.2 1.5</td>
<td>550 A</td>
<td>150°C</td>
<td>26 2.0 6.4 32 0 0.3 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPC2020</td>
<td>4</td>
<td>60</td>
<td>1.5 2.0</td>
<td>470 A</td>
<td>150°C</td>
<td>22 2.0 5.0 42 0 0.3 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPC2021</td>
<td>4</td>
<td>80</td>
<td>1.8 2.5</td>
<td>420 A</td>
<td>150°C</td>
<td>20 2.1 3.8 60 0 0.3 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPC2022</td>
<td>4</td>
<td>100</td>
<td>2.4 3.2</td>
<td>360 A</td>
<td>150°C</td>
<td>17 2.0 3.7 60 0 0.3 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPC2019</td>
<td>4</td>
<td>200</td>
<td>33 43</td>
<td>42 A</td>
<td>125°C</td>
<td>2 0.33 0.63 17.5 0 0.3 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPC2015</td>
<td>2</td>
<td>40</td>
<td>3.2 4</td>
<td>150 A</td>
<td>125°C</td>
<td>10.5 2.2 3 18.5 0 0.3 33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPC2001</td>
<td>2</td>
<td>100</td>
<td>5.6 7</td>
<td>100 A</td>
<td>125°C</td>
<td>8 2.2 2.3 35 0 0.3 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPC2012</td>
<td>2</td>
<td>200</td>
<td>70 100</td>
<td>15 A</td>
<td>125°C</td>
<td>1.5 0.57 0.33 11 0 0.3 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hard Switching FOM

\[FOM_{HS} = \left(Q_{GD} + Q_{GS2} \right) \cdot R_{DS(on)} \]

Drain-to-Source Voltage (V)

\[V_{DS} = 0.5\cdot V_{DSS}, \quad I_{DS} = 20 \text{ A} \]
Wireless Power Figure of Merit

- All topologies are ZVS: $Q_G - Q_{GD}$ only
- C_{OSS} is “absorbed” in matching – excluded
- C_{OSS} still important:
 - Drives off-resonance losses
 - Determines design-ability (Maximum C_{OSS})

$$FOM_{WPT} = R_{DS(on)} \cdot (Q_G - Q_{GD})$$
A too low R_{DSon} yields too high C_{OSS} to realize design!
Optimal Device – ZVS Class D

- Gate Power dominant
- R_{DSon} losses dominant

Device Power [mW] vs. RDS(on) [mΩ]

- eGaN FET 100V
- eGaN FET 65V
- MOSFET VGS = 10 V

- MOSFET2
- EPC2007
- EPC8009
- EPC8009
Experimental Setup

ZVS Class-D

Source Coil

Device Coil

Device Board
Rectifier, Capacitor, Load Resitors

Matching

25mm

100mm

50mm

100mm

50mm

Matching

Amplifier connection

Class-E

Load connection
Experimental Background

• Operating setup:
 • On resonance tuned source coil
 • Device tuning is fixed

• Performance testing:
 • Fixed load, variable supply (Peak Performance)
 • Fixed supply, variable DC load (3:1 ratio) (Load Variation)
 • Fixed load voltage, variable DC load (3:1 ratio) (Load Regulation)
 • Fixed supply voltage, foreign object response
Peak Performance Results

Variable Supply Voltage
Fixed DC Load Resistance

Efficiency [%] vs. Output Power [W]

- η EPC8009 ZVS-CD
- η MOSFET 2 ZVS-CD
- η EPC2012 SE-CE
- η MOSFET 1 SE-CE
Load Variation Results

Coil becomes Capacitive

Fixed Supply Voltage

Coil becomes Inductive

Efficiency [%] vs DC Load Resistance [Ω]

η EPC2012 SE-CE
η MOSFET 1 SE-CE
η EPC8009 ZVS-CD
η MOSFET 2 ZVS-CD

Coil becomes Inductive

Fixed Supply Voltage

Coil becomes Capacitive

η EPC2012 SE-CE
η MOSFET 1 SE-CE
η EPC8009 ZVS-CD
η MOSFET 2 ZVS-CD
Load Regulation Comparison

Fixed DC load voltage, DC Load Resistance varied

![Graph showing load regulation comparison for different MOSFETs. The graph plots efficiency (%) against DC load resistance (Ω). The curves represent:
- EPC8009 ZVS-CD (solid blue line)
- MOSFET 2 ZVS-CD (dotted blue line)
- EPC2012 SE-CD (solid red line)
- MOSFET 1 SE-CE (dotted red line).]
Class-E Thermal Performance

LM5113 eGaN FET UCC27511 MOSFET

Pout = 29 W in 20.2 Ω
ZVS Class-D Thermal Performance

LM5113
EPC8009
LM5107
MOSFET

Pout = 35 W in 23.6 Ω

Pout = 17 W in 23.6 Ω
ZVS Class-D waveforms

EPC8009 – 32.5 W into 23.6 Ω
Foreign Metal Object Response

- No simple means to detect a foreign object
- Ability to operate in presence of foreign metal object:
 - ZVS Class-D – very good
 - Class-E – very bad

<table>
<thead>
<tr>
<th>Spacing</th>
<th>Voltage</th>
<th>Current</th>
<th>Temperature</th>
<th>Remarks</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mm Class E</td>
<td>6.4\cdot V_{sup}</td>
<td>0.3\cdot I_{nom}^*</td>
<td>FET Very High(^*)</td>
<td>Capacitive switching losses</td>
<td>High</td>
</tr>
<tr>
<td>5 mm ZVS Class D</td>
<td>1\cdot V_{sup}</td>
<td>0.02\cdot I_{nom}</td>
<td>40°C FET</td>
<td>Normal</td>
<td>Low</td>
</tr>
</tbody>
</table>

\(^*\) Circuit cannot operate at full input voltage
Topology Comparison
Summary

- **Class-E:**
 - Good for Small load variations
 - Cannot tolerate foreign objects well

- **ZVS Class-D:**
 - Highest Efficiency
 - Good foreign object operation
 - Lowest impact on tuned coil impedance (Low Z_{out})
 - Lower Z_{OUT} reduces impact of load variation
Next Steps

• New EPC Demo Boards
 • Single Ended and Differential ZVS Class-D
 • 6.78 MHz & 13.56 MHz
 • Includes Constant Current (CC) Pre-Regulator
EPC’s New ZVS Class-D Demo

- Single Ended and Differential ZVS Class-D
- Tuned A4WP class 3 and 1x Category 3 Coil set
- 6.78 MHz Design
- Constant Current Pre-Regulator

EPC9111 & EPC9112

EPC9506/7
Peak Performance Results

Peak Efficiency, Single load capability
Variable Supply, Fixed Load

Class 4
Power Limit

Category 3
Power zone

Peak Efficiency, Single load capability
Variable Supply, Fixed Load

Efficiency [%] vs. DC Load Power [W]

- η ZVS-CD RDC=50 Ω
- η CE-2012 RDC=25 Ω
- η CE-MOSFET 3 RDC=25 Ω
- Vin ZVS-CD
- Vin CE-2012
- Vin CE-MOSFET 3

Input Voltage [V] vs. Efficiency [%]
Peak Performance Results

Peak Efficiency for **Category 3 Load**
Variable Supply, Fixed Load

![Graph showing peak efficiency for different load conditions.](image)

Key Points:
- Efficiency as a function of DC load power and input voltage for different load configurations:
 - η ZVS-CD RDC=50 Ω
 - η CE-2012 RDC=25 Ω
 - η MOSFET 3 RDC=25 Ω
- Vin ZVS-CD
- Vin CE-2012
- Vin CE-MOSFET 3
EPC8009 ZVS Class D Waveforms & Thermal

\[V_{DC} = 38 \, V \]
\[P_{out} = 23.5 \, W \]
\[R_{DC\text{load}} = 50.3 \, \Omega \]

High Power, Peak Performance
Load Variation Results

High Power Capability

Load Regulation ($V_{out} = 15$ V)

- η ZVS-CD
- η CE-2012
- η CE-MOSFET 3
- Pout

Category 3 Power zone
Next Steps

- Full A4WP impedance range testing
- Expand to Class 2 support
- eGaN FETs specifically designed for Wireless Power
 - ZVS Class-D – Optimized Half bridge device
 - Differential Class-E – Dual FET common source
Optimal eGaN FET Performance

ZVS Class D topology

Gate Power dominant

R_{DS(on)} losses dominant

Device Power [mW]

R_{DS(on)} [mΩ]

MOSFET2

50% loss reduction

MOSFET VGS = 5 V

eGaN FET 65V

EPC8009

New eGaN FET

50% loss reduction
Summary

- eGaN® FETs are disruptive in Wireless Energy:
 - Enable Wireless Power
 - Yield Higher Efficiency than MOSFETs
 - Can operate at 6.78 MHz
 - Are low profile
 - Easy to use
 - Drive new topologies e.g. ZVS Class-D
 - Increasing IC vendor support for eGaN FETs
 - Increasing customer adoption
The end of the road for silicon.....
is the beginning of the eGaN FET journey!