GaN Talk a blog dedicated to crushing silicon
Term: ドローン
3 post(s) found

Jan 20, 2023

Shrink Motor Drives for eBikes and Drones

Marco Palma, Director of Motor Drives Systems and Applications

GaN is a game changer for motor drive applications. For designers to take advantage of this technology, fast and reliable time-to-market is critical. Easy-to-use reference designs using state-of-the-art electronics and techniques provide a valuable tool to speed time to market. The EPC9173 tool allows designers of eBikes and drones to enhance motor system size, performance, range, precision, and torque, all while simplifying design for faster time-to-market.  

The EPC9173 integrates all the necessary circuits to operate a 3-phase BLDC motor with high performance, 48 V input, 1.5kW output, and three-phase inverter using six EPC23101  GaN ICs. Thanks to the high-power density and the high electrical conductivity of GaN ICs, the EPC9173 delivers up to 25 ARMS on each leg and supports PWM switching frequencies up to 250 kHz under a natural convection passive heatsink. The resultant quality of the current output waveforms, lesser torque oscillations, and total system efficiency increase the performance of the motor-drive system. Further, the extremely small size of this inverter allows integration into the motor housing resulting in the lowest EMI, highest density, and lowest weight.

Mar 16, 2020

ePower™ Stage – Redefining Power Conversion

Renee Yawger, Director of Marketing

Beyond just performance and cost improvement, the most significant opportunity for GaN technology to impact the power conversion market comes from its intrinsic ability to integrate multiple devices on the same substrate. GaN technology, as opposed to standard silicon IC technology, allows designers to implement monolithic power systems on a single chip in a more straightforward and cost-effective way.

Today, the most common building block used in power conversion is the half bridge. In 2014, EPC introduced a family of integrated half-bridge devices which became the starting point for the journey towards a power system-on-a-chip. This trend was expanded with the introduction of the EPC2107 and EPC2108, which integrated half bridges with integrated synchronous bootstrap. In 2018 we further continued the integration path with the introduction of eGaN ICs combining gate drivers with high-frequency GaN FETs in a single chip for improved efficiency, reduced size, and lower cost. Now, the ePower™ Stage IC family redefines power conversion by integrating all functions in a single GaN-on-Si integrated circuit at higher voltages and higher frequency levels beyond the reach of silicon.

Nov 12, 2019

The Time for Disruption is Now − GaN Makes a Frontal Attack on Silicon Power MOSFETs

Alex Lidow, Ph.D., CEO and Co-founder

Silicon has been around long enough. It’s time for a younger and far more fit challenger to take over semiconductor material dominance.

When I first started developing power devices 44 years ago, the “king of the hill” was the silicon power bipolar transistor.  In 1978 International Rectifier (IRF) launched power MOSFETs as a faster alternative to the slower and aging bipolar devices.  The early adopters of the power MOSFET were applications where the bipolar just was not fast enough.  The signature example for its adoption was the switching power supply for the desktop computer; first at Apple, and then at IBM