GaN Talk a blog dedicated to crushing silicon

Sep 15, 2016

Drones…Up, Up, and Away

Alex Lidow, Ph.D., CEO and Co-founder

Drones are on the rise. In fact, use of drones is only limited by our imagination – from merely recreational (think “drone races”) to delivering packages (as promised by Amazon) to a range of life-saving military uses (such as real-time battlefield imaging). Emerging high speed, small size, and highly efficient gallium nitride power semiconductors are key contributors to the expansion of drone applications, including onboard equipment such as LiDAR imaging and navigation systems and 4G/5G communication transmitters. Let’s take a look at how GaN technology and the expansion of drone applications intersect.

A drone, or more technically, an unmanned aerial vehicle (UAV) is an aircraft without a pilot on board. Control of the drone is accomplished either under remote control from the ground or under control of an onboard computer.

Although drones originated mostly in military applications, civilian drones now vastly outnumber military drones, with estimates of over 9 million consumer drones to be sold in 2016 world wide for a total market value of near $3 billion.

Aug 20, 2016

eGaN Technology Reliability and Physics of Failure - eGaN Stress Test Qualification and Capability

Chris Jakubiec, Director of Reliability and Failure Analysis

The first two installments in this series reported in detail on field reliability experience of Efficient Power Conversion (EPC) Corporation’s enhancement-mode gallium nitride (eGaN®) FETs and integrated circuits (ICs). The excellent field reliability of eGaN® devices demonstrates stress-based qualification testing is capable of ensuring reliability in customer applications. In this installment we will examine the stress tests that EPC devices are subjected to prior to being considered qualified products.

Jul 26, 2016

Rethinking Server Power Architecture in a Post-Silicon World: Getting from 48 Vin – 1 Vout Directly

David Reusch, Ph.D., Principal Scientist, VPT

The demand by our society for information is growing at an unprecedented rate. With emerging technologies, such as cloud computing and the internet of things (IoT), this trend for more and faster access to information is showing no signs of slowing. What makes the transfer of information at high rates of speed possible are racks and racks of servers, mostly located in centralized data centers.

Jul 18, 2016

eGaN Technology Reliability and Physics of Failure - Examining eGaN Field Reliability

Chris Jakubiec, Director of Reliability and Failure Analysis

Efficient Power Conversion (EPC) Corporation’s enhancement-mode gallium nitride (eGaN®) FETs and integrated circuits (ICs) are finding their way into many end user applications such as LIDAR, wireless charging, DC-DC conversion, RF base station transmission, satellite systems, and audio amplifiers.

Jul 12, 2016

eGaN Technology Reliability and Physics of Failure

Alex Lidow, Ph.D., CEO and Co-founder

Efficient Power Conversion (EPC) Corporation’s enhancement-mode gallium nitride (eGaN®) FETs continue to expand into new market applications due to the competitive performance advantages over traditional power MOSFETs. Wireless power, DC-DC conversion, RF base station transmission, satellite systems, audio amplifiers, and LiDAR are just a few example applications that can take advantage of the superior performance of eGaN FETs.

Jun 28, 2016

Emerging Applications in Medical Care Using GaN Technology

Alex Lidow, Ph.D., CEO and Co-founder

The contribution that gallium nitride semiconductor technology is making in medical applications can be measured not only in dollars saved, but also more importantly in its contribution to the speed of intervention, diagnostic accuracy and patient comfort. Because of its superior performance and small size, GaN components (FETs and ICs) are enabling end applications such as wireless power charging, higher resolution diagnostics, and precision surgical robotics. These applications are improving ways health care is being provided.

Jun 16, 2016

No Need for Power Cords Now!

Alex Lidow, Ph.D., CEO and Co-founder

Wireless Power is here and Multi-mode Solutions will Fuel its Adoption Rate

Wireless power has arrived! The 220 end-use products with embedded wireless power capability sold in 2015 provides evidence of this arrival. More recently, Dell’s demonstration of a 30 W wireless charging pad for laptops at Computex showed the expansion of this technology to mobile devices beyond the cell phone.

Companies the likes of Google and Facebook have declared that they are making charging stations conveniently available to employees. In fact, the wireless power market is estimated to grow at an 85% CAGR through 2020. It is clear that the design and manufacturing “engines” for wireless power production have started. We are on our way to realizing the prediction by Wireless Power Consortium’s (WPC) vice president of marketing development, John Perzow, when he “…envisions a phone that never dies since it will be continuously charged…It [phone] will be charging while you’re sleeping, driving, working, and practically any public place you decide to stay at.”

Jun 08, 2016

Six Reasons to Rethink Power Semiconductor Packaging

Alex Lidow, Ph.D., CEO and Co-founder

In my 40 years’ experience in power semiconductors I have visited thousands of customers, big and small, on every continent except Antarctica. When the issue invariably turns to the packaging of the power semiconductor – transistor, diode, or integrated circuit – the requests for improvement fall into six categories:

  1. Can you make the package smaller?
  2. Can you reduce the package inductance?
  3. Can you make the product with lower conduction losses?
  4. Can you make the package more thermally efficient?
  5. Can you sell the product at a lower price?
  6. Can you make the package more reliable?

eGaN® FETs and integrated circuits from EPC have taken a very different approach to packaging power semiconductors – we have ditched the package altogether!

Jun 07, 2016

GaN technology is getting exciting…end applications are emerging!

Nick Cataldo, Senior Vice President for Global Sales and Marketing

As the VP of Sales and Marketing for EPC, I have attended a number of power electronics industry trade shows since the beginning of the year. What has struck me about these shows is the increasing number of end product demonstrations enabled by GaN FET and IC technology.

At CES in January, APEC in March, PCIM Europe in May, and most recently, at Computex Asia last month, GaN applications were front and center. Here are a few examples of what I saw:

Jun 02, 2016

Revisiting What It Takes for a New Semiconductor Technology to be Disruptive

Alex Lidow, Ph.D., CEO and Co-founder

In March 2010 Efficient Power Conversion (EPC) proudly launched our GaN technology at the CIPS conference in Nuremberg, Germany.  Parts and development kits were readily available off-the shelf and therefore designers could immediately get started with a new state-of-the-art semiconductor technology.

At that time, we listed four key attributes we believed a new semiconductor technology needed in order to be really disruptive to the end markets.  A lot has happened in the six years since.  GaN has continued to ascend as the presumptive replacement for the aging power MOSFET, yet there are still a few design engineers and technical managers that remain skeptical.  So let’s look again at these four key attributes and see where GaN stands in addressing them.