博客 -- 氮化镓技术如何击败硅技术

6月 05, 2017

LASER Safety in a LiDAR World

Rick Pierson, Senior Manager, Digital Marketing

This post was originally published on Velodyne LiDAR’s “360” Blog. Learn more about eGaN technology here and EPC GaN solutions for LiDAR here.

Have you ever been driving at night—perhaps on a twisty two-lane highway—when the headlights of an oncoming car seemingly “crash” into your retinas? Blue-tinged LED beams leap out from behind a curve, or crest over a hillside, and for an instant it feels like you may have gone blind. Your vision erupts with a painful jolt of white. You squint through patchy discolorations trying to locate the lane lines. A quick flip of your high beams results in an even brighter display from the oncoming car. And now there are two drivers swerving past one another who couldn’t read the top line at the eye doctor.

As nighttime images of the earth from the International Space Station confirm, ours is an increasingly illuminated world. And LEDs, or light emitting diodes, supply a cheap and efficient means for broad illumination, not just for vehicles but increasingly for street lighting. Yet some types of LEDs have recently raised concerns of associated health risks.

5月 30, 2017

11 Myths About Magnetic-Resonance Wireless Charging

Rick Pierson, Senior Manager, Digital Marketing

Written By Sanjay Gupta, VP Product Management, WiTricity

While the possibilities of magnetic-resonance-based wireless charging are very exciting, the technology is frequently misunderstood by those not involved in the industry.

Consider the devices we use every day: From smartphones and smartwatches and potentially electric vehicles, electronics are becoming as mobile as people themselves. We rely and expect our devices to be charged at all times, ready-to-use when needed. But as it currently stands, we still must plug in our phones, our electric cars, and our smartwatches, tethering us to cords and cables, triggering range anxiety and obsessing about the remaining juice on our devices.

5月 04, 2017

硅基氮化镓功率器件如何把硅基功率MOSFET逐出市场

Alex Lidow, Ph.D., CEO and Co-founder

Gallium nitride (GaN) power transistors designed for efficient power conversion have been in production for seven years. New markets, such as light detection and ranging, envelope tracking, and wireless charging, have emerged due to the superior switching speed of GaN. These markets have enabled GaN products to achieve significant volumes, low production costs, and an enviable reliability reputation. All of this provides adequate incentive for the more conservative design engineers in applications such as dc–dc converters, ac–dc converters, and automotive to start their evaluation process. So what are the remaining barriers to the conversion of the US$12 billion silicon power metal–oxide–semiconductor field-effect transistor (MOSFET) market? In a word: confidence. Design engineers, manufacturing engineers, purchasing managers, and senior management all need to be confident that GaN will provide benefits that more than offset the risk of adopting a new technology. Let’s look at three key risk factors: supply chain risk, cost risk, and reliability risk.

4月 11, 2017

氮化镓技术在四方面拯救地球

Alex Lidow, Ph.D., CEO and Co-founder

Gallium nitride (GaN) is a better semiconductor than silicon. There are many crystals that are better than silicon, but the problem has always been that they are far too expensive to be used in every application where silicon is used. But, GaN can be grown as an inexpensive thin layer on top of a standard silicon wafer enabling devices that are faster, smaller, more efficient, and less costly than their aging silicon counterparts.

4月 07, 2017

氮化镓应用:功率管理产业增长的下一个火车头

Rick Pierson, Senior Manager, Digital Marketing

This post was written by EDN senior technical editor, Steve Taranovich for the Power-management Design Center , How To Article section on APEC 2017. Originally published on April 03, 2017.”

3月 22, 2017

氮化镓晶体管为高速马达驱动器布局全新领域

Rick Pierson, Senior Manager, Digital Marketing

This post was originally published on TI’s TI E2E Community “Power House” Blog. Learn more about eGaN technology here and EPC GaN solutions here.

3月 09, 2017

How we devised a wirelessly powered television set

Michael de Rooij, Ph.D., Vice President, Applications Engineering

Televisions can get their content wirelessly, but there is one set of wires they still need: those in their power cord. The consumer electronics industry has floated ideas for freeing TVs from their power cords, but this goal remains elusive. There are several reasons, such as the difficultly of meeting high-power requirements for large-screen TVs and the need for identifying an economical technology. Nevertheless, eGaN FETs could play a role in making TVs truly cordless devices.

2月 03, 2017

eGaN Technology Reliability and Physics of Failure – How eGaN FETs are expected to behave as the result of high gate voltage stress conditions

Chris Jakubiec, Director of Reliability and Failure Analysis

The previous installment in this series focused on the physics of failure surrounding thermo-mechanical reliability of EPC eGaN® wafer level chip-scale packages. A fundamental understanding of the potential failure modes under voltage bias is also important. This installment will provide an overview of the physics of failure associated with voltage bias at the gate electrode of gallium nitride (GaN) field effect transistors (FETs). Here we look at the case of taking the gate control voltage to the specified limit and beyond to investigate how eGaN FETs behave over a projected lifetime.

1月 13, 2017

eGaN Technology Reliability and Physics of Failure - Thermo-mechanical board level reliability of eGaN devices

Chris Jakubiec, Director of Reliability and Failure Analysis

The first three installments in this series covered field reliability experience and stress test qualification of Efficient Power Conversion (EPC) Corporation’s enhancement-mode gallium nitride (eGaN®) field effect transistors (FETs) and integrated circuits (ICs).  Excellent field reliability that was documented is the result of applying stress tests covering the intended operating conditions the devices will experience within applications.  Of equal importance is understanding the underlying physics of how eGaN® devices will fail when stressed beyond intended operating conditions (e.g. datasheet parameters and safe operating area).  This installment will take a deeper dive into the physics of failure centered around thermo-mechanical reliability of eGaN® wafer level chip-scale packages (WLCSP).

12月 12, 2016

Mid-Year Checkup on My 2016 GaN Technology Predictions

Alex Lidow, Ph.D., CEO and Co-founder

Prognosticators do not often risk their reputations by giving their predictions a “checkup” midway through the period of their predictions. But, I am going to give it a shot and here we go…