博客 -- 氮化镓技术如何击败硅技术
Term: ロボット
4 post(s) found

8月 08, 2023

氮化镓器件在医疗技术应用的潜力

Renee Yawger, Director of Marketing

为您的医疗技术应用选择氮化镓产品时,请考虑性能要求、尺寸和重量限制、产品和供应商的可靠性,以及成本等因素。我们会针对这些因素为您提供最新一代的氮化镓器件的最佳组合 - 您只需在网上“产品选择指南”的最新一代器件、在状态栏中剔出“首选”。还有多种设计工具可为您的应用选择正确的氮化镓产品,包括降压计算器、热计算器和交叉参考工具,它们都可以在Power Bench工具套件中找到。

9月 14, 2021

Motor Drives Showdown – GaN vs. Silicon

Marco Palma, Director of Motor Drives Systems and Applications

This GaN Talk blog discusses the advantages of using GaN-based inverters instead of silicon-based inverters for motor drive designs to operate smoother while reducing size and weight. These advantages are critical for motor drives used in typical applications such as warehousing & logistical robots, servo drives, e-bikes & e-scooters,  collaborative and low voltage robots and medical robotics, industrial drones, and automotive motors.

Omdia forecasts that worldwide shipments of warehousing and logistics robots will grow rapidly over the next 5 years from 194,000 units in 2018 to 938,000 units annually by 2022, with the rate of growth slowing after 2021 as many major players will have adopted robotic systems by then.  Worldwide revenue for this category will increase from $8.3 billion in 2018 to $30.8 billion in 2022, providing significant opportunities for established participants and emerging players.

3月 16, 2020

ePower™ Stage – Redefining Power Conversion

Renee Yawger, Director of Marketing

Beyond just performance and cost improvement, the most significant opportunity for GaN technology to impact the power conversion market comes from its intrinsic ability to integrate multiple devices on the same substrate. GaN technology, as opposed to standard silicon IC technology, allows designers to implement monolithic power systems on a single chip in a more straightforward and cost-effective way.

Today, the most common building block used in power conversion is the half bridge. In 2014, EPC introduced a family of integrated half-bridge devices which became the starting point for the journey towards a power system-on-a-chip. This trend was expanded with the introduction of the EPC2107 and EPC2108, which integrated half bridges with integrated synchronous bootstrap. In 2018 we further continued the integration path with the introduction of eGaN ICs combining gate drivers with high-frequency GaN FETs in a single chip for improved efficiency, reduced size, and lower cost. Now, the ePower™ Stage IC family redefines power conversion by integrating all functions in a single GaN-on-Si integrated circuit at higher voltages and higher frequency levels beyond the reach of silicon.

11月 12, 2019

The Time for Disruption is Now − GaN Makes a Frontal Attack on Silicon Power MOSFETs

Alex Lidow, Ph.D., CEO and Co-founder

Silicon has been around long enough. It’s time for a younger and far more fit challenger to take over semiconductor material dominance.

When I first started developing power devices 44 years ago, the “king of the hill” was the silicon power bipolar transistor.  In 1978 International Rectifier (IRF) launched power MOSFETs as a faster alternative to the slower and aging bipolar devices.  The early adopters of the power MOSFET were applications where the bipolar just was not fast enough.  The signature example for its adoption was the switching power supply for the desktop computer; first at Apple, and then at IBM