博客 -- 氮化镓技术如何击败硅技术
Term: D級オーディオ
3 post(s) found

5月 10, 2023

氮化镓器件的开关频率:在下一代高频电路中使用氮化镓技术

Renee Yawger, Director of Marketing

氮化镓(GaN)器件是一种非常坚硬和在机械方面非常稳定的宽带隙半导体材料,用于生产功率器件、射频元件和发光二极管 (LED)。其开关频率远高于硅器件,使电力电子设计人员能够利用氮化镓器件创建更小、更高效、性能更高的系统,这是以前采用硅技术难以实现。

7月 29, 2021

High-Quality, Low-Cost Audio Achieved with GaN

Renee Yawger, Director of Marketing

Until recently, to achieve high-quality sound from an audio amplifier cost thousands of dollars and relied on a large, heavy, power-hungry class-A amplifier. Now, the advent of gallium nitride FETs and ICs is ushering the age of high quality, lower cost class-D audio amplifiers. 

Distortion Performance Issues Lowered with GaN

Historically, meeting the required distortion performance targets (THD+N, TIM and IM) for high-quality audio, class-D amplifiers had to resort to incorporating large amounts of feedback circuitry to compensate for poor open-loop performance. The source of this distortion was the silicon power MOSFET.

8月 21, 2020

New 200 V eGaN Devices Double the Performance Edge Over the Aging Silicon Power MOSFET.

Alex Lidow, Ph.D., CEO and Co-founder

Efficient Power Conversion (EPC) is doubling the performance distance between the aging silicon power MOSFET and eGaN® transistors with 200 V ratings.  The new fifth-generation devices are about half the size of the prior generation.  This performance boost comes from two main design differences, as shown in figure 1.  On the left is a cross-section of the fourth generation 200 V enhancement-mode GaN-on-Si process.  The cross-section on the right is the fifth-generation structure with reduced distance between gate and source electrodes and an added thick metal layer. These improvements, plus many others not shown, have doubled the performance of the new-generation FETs.