新闻

客户可以在我们的网页 注册 ,定期收取最新消息包括全新产品发布、应用文章及更多其它资讯。如果你错过了已发布的资料,你可浏览以下的文档。

小型化的低压 GaN FET的准确表征

小型化的低压 GaN FET的准确表征

低压 GaN FET 可实现更小、冷却要求最小化和效率更高的解决方案

与采用传统的硅基功率 MOSFET的应用相比,低压 GaN FET(即 100 V)可实现更小,冷却要求最小化和效率更高的解决方案。 本文讨论了氮化镓器件如何应对动态性能需要重复且可靠的表征的挑战。 定制氮化镓夹具和测试板的机械和电气设计仔细、周全,就可以克服其中许多挑战,使您能够在设计功率转换器时,自信地使用这些新型宽能隙器件。

Power Electronics News
2023年7月
阅读文章

阅读全文

EPC Opens GaN-based Motor Drive Design Application Center in Italy

EPC Opens GaN-based Motor Drive Design Application Center in Italy

The development of gallium nitride technology has ushered in a new age for power electronics. The greater bandgap, critical field, and electron mobility are the three factors that affect GaN technology the most. To concentrate on expanding motor drive applications based on GaN technology in the e-mobility, robotics, drone, and industrial automation areas, EPC has opened a new design application center close to Turin, Italy.

EE Times Europe
September, 2022
Read Article

阅读全文

EPC Opens New Motor Drive Center of Excellence

EPC Opens New Motor Drive Center of Excellence

New Motor Drive Center of Excellence (CoE) design center in Turin, Italy, to help customers exploit the power of GaN for growing motor drive applications

EL SEGUNDO, Calif.— September, 2022 —   EPC has opened a new design application center near Turin, Italy, to focus on growing motor drive applications based on GaN technology in the e-mobility, robotics, drones, and industrial automation markets.  The specialist team will support customers in accelerating their design cycles and define future Integrated Circuits for power management with state-of-the art equipment to test applications from 400 W to 10’s of kW.

阅读全文

Thermal Management of Chip-Scale GaN Devices

Thermal Management of Chip-Scale GaN Devices

This article discusses the challenges that thermal management raises due to increase power density, especially with chip-scale packaging (CSP). What is sometimes overlooked, however, is that CSP eGaN® power FETs and integrated circuits have excellent thermal performance when mounted on standard printed circuit board (PCBs) with simple methods for attaching heat sinks. Simulations, supported by experimental verification, examine the effect of various parameters and heat flow paths to provide guidance on designing for performance versus cost.

Bodo’s Power Systems
February, 2021
Read article

阅读全文

Layout Considerations for GaN Transistor Circuits

Layout Considerations for GaN Transistor Circuits

Gallium nitride (GaN) transistors have been in mass production for over 10 years. In their first few years of availability, the fast switching speed of the new devices – up to 10 times faster than the venerable Si MOSFET – was the main reason for designers to use GaN FETs. As the pricing of GaN devices normalized with the MOSFET, coupled with the expansion of a broad range of devices with different voltage ratings and power handling capabilities, much wider acceptance was realized in mainstream applications such as DC-DC converters for computers, motor drives for robots, and e-mobility bikes and scooters. The experience gained from the early adopters has led the way for later entrants into the GaN world get into production faster. This article is the first in a series of articles discussing three topics that can help power systems designers achieve the most out of their GaN-based designs at the lowest cost. The three topics are: (1) layout considerations; (2) thermal design for maximum power handling; and, (3) EMI reduction techniques for lowest cost.

Bodo’s Power Systems
January, 2021
Read article

阅读全文

EPC公司进一步更新了其广受欢迎的 氮化镓(GaN)功率晶体管及集成电路的播客系列

EPC公司进一步更新了其广受欢迎的 氮化镓(GaN)功率晶体管及集成电路的播客系列

宜普电源转换公司(EPC)依据《氮化镓晶体管–高效功率转换器件》第三版教科书的增订内容,更新了首7个、合共14个教程的视频播客,与工程师分享采用氮化镓场效应晶体管及集成电路的理论、设计基础及应用,例如激光雷达、DC/DC转换及无线电源等应用。

宜普电源转换公司(EPC)更新了其广受欢迎的“如何使用氮化镓器件”的视频播客系列。该视频系列的内容是依据最新出版的《氮化镓晶体管–高效功率转换器件》.第三版教科书的内容制作。合共14个教程的视频播客系列旨在为功率系统设计工程师提供技术基础知识及针对专有应用的工具套件,从而让工程师学习如何采用氮化镓晶体管及集成电路,设计出更高效的功率转换系统。

阅读全文

EPC partners with Würth Elektronik eiSos to present Trilogy of Wireless Power Transfer

EPC partners with Würth Elektronik eiSos to present Trilogy of Wireless Power Transfer

The Trilogy of Wireless Power Transfer consists of three parts: Basics Principles of Wireless Power Transmission, Wireless Power Transfer Systems and Applications. The first part of the book explains the basic physical principles and the different methods of contactless power transmission. Furthermore, the leading standards are presented in this part. The second part describes wireless power transfer systems, the different topologies of wireless power transmission, the right selection of transmitter and receiver coils required to increase efficiency, and the selection of transistors, for instance. The third part is dedicated to practical applications. This includes applications within the scope of the Qi standard, as well as examples of proprietary solutions. An overview of EMI-relevant topics for closely and loosely coupled systems, as well as an example of a multimode wireless power transmission system round out the practical part. The authors of the "Trilogy of Wireless Power Transfer" are Cem Som, Division Manager Wireless Power Transfer at Würth Elektronik eiSos; and Dr. Michael de Rooij, Vice President Applications Engineering at Efficient Power Conversion Corporation, Inc. The book costs 19 euros and can be ordered from Würth Elektronik eiSos or through bookstores.

Learn more

阅读全文

How eGaN FETs power LIDAR

How eGaN FETs power LIDAR

LIDAR is presently a subject of great interest, primarily due to its widespread adoption in autonomous navigation systems for vehicles, robots, drones, and other mobile machines. eGaN devices are one of the main factors in making affordable, high performance LIDAR possible in a small form factor thus further fueling the LIDAR revolution.

EDN
By John Glaser
Read article

阅读全文

eGaN FET-Based Synchronous Rectification

eGaN FET-Based Synchronous Rectification

As GaN-on-Si becomes more common in DC-DC converter designs, questions often arise from experienced designers about the impact of the unique characteristics of GaN transistors when used as synchronous rectifiers (SRs). In particular, the third quadrant off-state characteristics, better known as “body diode” conduction in Si MOSFETs, which is activated during converter dead-time, is of interest. For this article, the focus will be on the similarities and differences of Si MOSFETs and eGaN® FETs when operated as a “body diode” and outline their relative advantages and disadvantages.

Bodo’s Power Systems
By David Reusch & John Glaser
Read article

阅读全文

Best Practices for Integrating eGaN FETs

Best Practices for Integrating eGaN FETs

Best design practices utilize the advantages offered by eGaN FETs, including printed circuit board (PCB) layout and thermal management. As GaN transistor switching charges continue to decrease, system parasitics must also be reduced to achieve maximum switching speeds and minimize parasitic ringing typical of power converters.

Power Electronics
Read article

阅读全文

IEEE电力电子学会(PELS)在线研讨会: “充分发挥采用芯片级封装的氮化镓晶体管及集成电路的优势”

IEEE电力电子学会(PELS)在线研讨会: “充分发挥采用芯片级封装的氮化镓晶体管及集成电路的优势”

IEEE电力电子学会( PELS)将于2016年11月3日(星期四)举行在线研讨会,届时将由Alex Lidow及Michael de Rooij主讲并与参加者分享采用芯片级封装的氮化镓功率器件的设计及PCB制造方法。

氮化镓技术领袖宜普电源转换公司(EPC)的专家将于美国东部夏令时间(EDT)11月3日(星期四)早上11时至中午12时于IEEE电力电子学会( PELS)在线研讨会中与工程师分享如何设计及使用氮化镓晶体管。

阅读全文

Thoughtful Board Design Unlocks the Promise of GaN

Thoughtful Board Design Unlocks the Promise of GaN

Power transistors with faster switching speeds will enable power supplies with smaller form factors and higher energy transfer efficiencies. Indeed, the elimination of heat sinks will give designers the ability to visualize entirely new form factors for power bricks and modules, including those enabling wireless power transfers. Gallium-nitride (GaN) transistors fabricated on silicon substrates can boost efficiencies and help shrink the footprint of power supplies.

Electronic Design
March, 2016
Read article

阅读全文

Radiated EMI Filter Design for an eGaN FET Based ZVS Class D Amplifier in 6.78MHz Wireless Power Transfer

Radiated EMI Filter Design for an eGaN FET Based ZVS Class D Amplifier in 6.78MHz Wireless Power Transfer

In this installment, we present a method to design a suitable EMI filter that can reduce unwanted frequencies to levels within radiated EMI specifications, and do this without negatively impacting the performance of the wireless power coil. In addition, the overall radiated EMI design aspects will also be covered.

EEWeb - Wireless & RF Magazine
Michael de Rooij, Ph.D.
February, 1, 2016
Read article

阅读全文
12