eGaN[®] FET DATASHEET

EPC2901C_55

Revised March 27, 2024

EPC2901C_55 – Enhancement Mode Power Transistor

V_{DS}, 100 V R_{DS(on)}, 7 mΩ max I_D, 36 A 95% Pb/5% Sn Solder

EFFICIENT POWER CONVERSION

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low $R_{DS(on)}$, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR} . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Die size: 4.1 x 1.6 mm

EPC2901C_55 eGaN® FETs are supplied only in passivated die form with solder bars.

Applications

- High-Frequency DC-DC conversion
- Industrial automation
- Synchronous rectification
- Low inductance motor drives

Benefits

- Ultra high efficiency
- Ultra low switching and conduction losses
- $\bullet \, Zero \, Q_{RR}$
- Ultra small footprint

Scan QR code or click link below for more information including reliability reports, device models, demo boards!

https://l.ead.me/EPC2901C_55

	Maximum Ratings			
	PARAMETER	VALUE	UNIT	
v	Drain-to-Source Voltage (Continuous)	100		
V _{DS}	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)	120	V	
I _D	Continuous (T _A = 25°C, $R_{\theta JA}$ = 7.3)	36		
	Pulsed (25°C, T_{PULSE} = 300 µs)	150	A	
V _{GS}	Gate-to-Source Voltage	6	V	
	Gate-to-Source Voltage	-4	v	
٦J	Operating Temperature	-40 to 150	°C	
T _{STG}	Storage Temperature	-55 to 150	C	

Thermal Characteristics				
	PARAMETER	ТҮР	UNIT	
R _{θJC}	Thermal Resistance, Junction-to-Case	1		
R _{θJB}	Thermal Resistance, Junction-to-Board	2	°C/W	
R _{0JA}	Thermal Resistance, Junction-to-Ambient (Note 1)	54]	

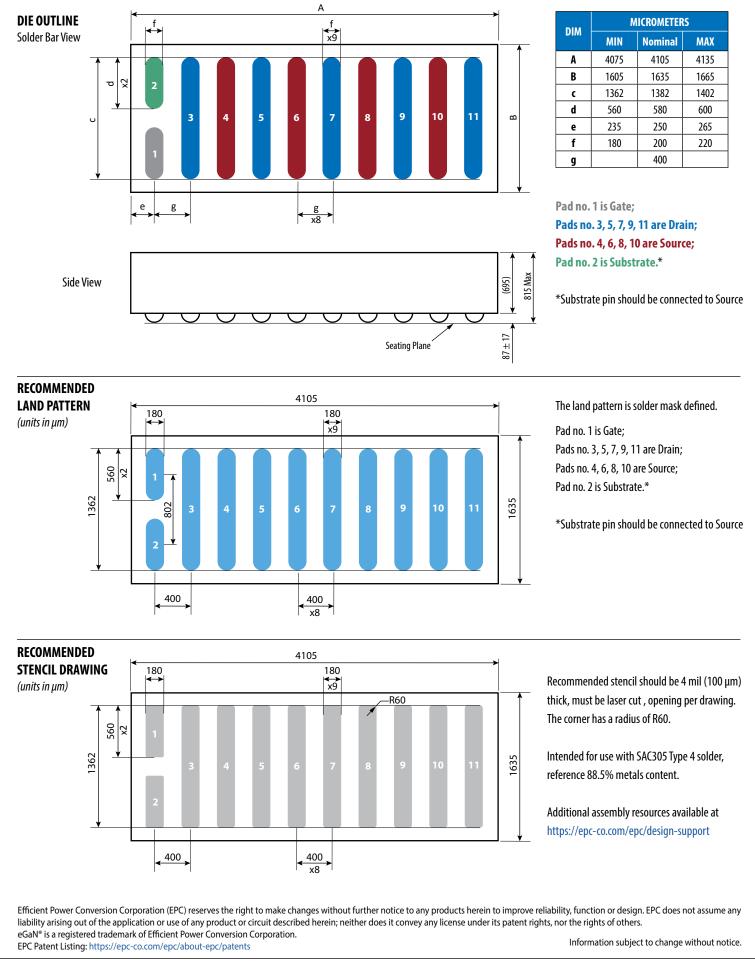
Note 1: R_{0IA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

Static Characteristics ($T_J = 25^{\circ}$ C unless otherwise stated)								
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT		
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 V, I_D = 300 \mu A$	100			V		
I _{DSS}	Drain-Source Leakage	$V_{GS} = 0 V, V_{DS} = 80 V$		2	250	μA		
		$V_{GS} = 0 V, V_{DS} = 80 V, T_{J} = -55^{\circ}C$		0.9	50			
I _{GSS}	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$		0.019	2	mA		
		$V_{GS} = 5 V, T_{J} = -55^{\circ}C$		0.01	1.5			
	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		1.4	250			
		$V_{GS} = -4 V, T_J = -55^{\circ}C$		0.14	50	μA		
V _{GS(TH)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 5 \text{ mA}$	0.8	1.6	2.5	v		
		$V_{DS} = V_{GS}$, $I_D = 5 \text{ mA}$, $T_J = -55^{\circ}\text{C}$	1.7 2.7		2.7			
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V}, \text{ I}_{D} = 25 \text{ A}$	4.8 7 3.1 6.5		7	mΩ		
		$V_{GS} = 5 V, I_D = 25 A, T_J = -55^{\circ}C$			6.5			
V_{SD}	Source-to-Drain Forward Voltage [#]	$V_{GS} = 0 V, I_{S} = 0.5 A$		1.8		V		
# Defined by	design. Not subject to production test.							

All measurements were done with substrate connected to source.

eGaN[®] FET DATASHEET

Dynamic Characteristics [#] (T _J = 25°C unless otherwise stated)							
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT	
C _{ISS}	Input Capacitance			756	1020		
C _{RSS}	Reverse Transfer Capacitance	$V_{GS} = 0 V, V_{DS} = 50 V$		9.25	13		
C _{OSS}	Output Capacitance			493	650	pF	
C _{OSS(ER)}	Effective Output Capacitance, Energy Related			567			
C _{OSS(TR)}	Effective Output Capacitance, Time Related			711			
R _G	Gate Resistance			0.3		Ω	
Q _G	Total Gate Charge	$V_{GS} = 5 V, V_{DS} = 50 V, I_{D} = 25 A$		6.9	10		
Q _{GS}	Gate to Source Charge			1.9			
Q _{GD}	Gate to Drain Charge	$V_{\rm DS} = 50 \text{ V}, \text{ I}_{\rm D} = 25 \text{ A}$		1.35	2		
Q _{G(TH)}	Gate Charge at Threshold			1.2		nC	
Q _{OSS}	Output Charge	$V_{GS} = 0 V, V_{DS} = 50 V$		36	45		
Q _{RR}	Source-Drain Recovery Charge			0			


Defined by design. Not subject to production test. All measurements were done with substrate connected to source.

DIE MARKINGS

2901					
YYYY	Dout	Laser Markings			
Die orientation dot ZZZZ	Part Number	Part # Marking Line 1	Lot_Date Code Marking Line 2	Lot_Date Code Marking Line 3	
Gate Pad solder bar is under this corner	EPC2901C_55	2901	YYYY	2222	

eGaN[®] FET DATASHEET

EPC2901C_55

