Development Board EPC9001 Quick Start Guide

40 V Half-Bridge with Gate Drive, Using EPC2015

Figure 1: Block Diagram of EPC9001 Development Board

Figure 4: Typical Waveforms for V In $=24 \mathrm{~V}$ to $1.2 \mathrm{~V} / 15 \mathrm{~A}(500 \mathrm{kHz})$ Buck converter CH1:Vpwm Input voltage - CH3: (lout) Switch node current - CH4: (Vout) Switch node voltage

Figure 2: Proper Connection and Measurement Setup

Figure 3: Proper Measurement of Switch Node - OUT

Quick Start Procedure

Development board EPC9001 is easy to set up to evaluate the perforn and measurement setup and follow the procedure below:

1. With power off, connect the input power supply bus to $+\mathrm{V}_{\text {IN }}(\mathrm{J} 5, \mathrm{~J} 6$
2. With power off, connect the switch node of the half bridge OUT (J:
3. With power off, connect the gate drive input to $+\mathrm{V}_{D D}(\mathrm{~J} 1, \mathrm{Pin}-1)$ anc
4. With power off, connect the input PWM control signal to PWM (J2,
5. Turn on the gate drive supply - make sure the supply is between 7
6. Turn on the bus voltage to the required value (do not exceed the
7. Turn on the controller / PWM input source and probe switching no
8. Once operational, adjust the bus voltage and load PWM control wi efficiency and other parameters.

NOTE. When measuring the high frequency content switch node (OUT), care must be oscilloscope probe tip through the large via on the switch node (designed for this pi Figure 3 for proper scope probe technique.

THERMAL CONSIDERATIONS

The EPC9001 development board showcases the EPC2015 eGaN FET. Altho vices, their relatively smaller size does magnify the thermal management r bient temperature and convection cooling. The addition of heat-sinking an devices, but care must be taken to not exceed the absolute maximum die t

NOTE. The EPC9001 development board does not have any current or therr
nance of the EPC2015 eGaN FET. Refer to Figure 2 for proper connect
and ground / return to $-\mathrm{V}_{\mathrm{IN}}(\mathrm{J} 7, \mathrm{~J} 8)$.
$3, \mathrm{~J} 4)$ to your circuit as required.
d ground return to $-V_{D D}(J 1$, Pin-2).
Pin-1) and ground return to any of the remaining J 2 pins.
V and 12 V range.
ibsolute maximum voltage of 40 V on $\left.\mathrm{V}_{\text {out }}\right)$.
de to see switching operation.
thin the operating range and observe the output switching behavior,
taken to avoid long ground leads. Measure the switch node (OUT) by placing the urpose) and grounding the probe directly across the GND terminals provided. See
ugh the electrical performance surpasses that for traditional silicon deequirements. The EPC9001 is intended for bench evaluation with low amd forced air cooling can significantly increase the current rating of these emperature of $125^{\circ} \mathrm{C}$.
nal protection on board.

DESCRIPTION

The EPC9001 development board is a 40 V maximum device voltage, 15 A maximum output current, half bridge with onboard gate drives, featuring the EPC2015 enhancement mode (eGaN®) field effect transistor (FET). The purpose of this development board is to simplify the evaluation process of the EPC2015 eGaNFET by including all the critical components on a single board that can be easily connected into any existing converter.

The EPC9001 development board is $2^{\prime \prime} \times 1.5^{\prime \prime}$ and contains not only two EPC2015 eGaN FET in a half bridge configuration using

Table 1: Performance Summary $\left(T A=25^{\circ} \mathrm{C}\right.$)

SYMBOL	PARAMETER	CONDITIONS
$V_{\text {DD }}$	Gate Drive Input Supply Range	
$\mathrm{V}_{\text {IN }}$	Bus Input Voltage Range	
$\mathrm{V}_{\text {OUT }}$	Switch Node Output Voltage	
$\mathrm{I}_{\text {OUT }}$	Switch Node Output Current	
$\mathrm{V}_{\text {PWM }}$	PWM Logic Input Voltage Threshold	Input'High'
		Input'Low'
	Minimum 'High'State Input Pulse Width	$\mathrm{V}_{\text {PwM }}$ rise and fall tim
	Minimum 'Low'State Input Pulse Width	$\mathrm{V}_{\text {PWM }}$ rise and fall tim

[^0]the Texas Instruments LM5113 gate driver, supply and bypass capacitors. The board contains all critical components and layout for optimal switching performance. There are also various probe points to facilitate simple waveform measurement and efficiency calculation. A complete block diagram of the circuit is given in Figure 1.

For more information on the EPC2015s eGaN FET please refer to the datasheet available from EPC at www.epc-co.com. The datasheet should be read in conjunction with this quick start guide.

	MIN	MAX	UNITS
	7	12	V
		28^{*}	V
		40	V
	3.5	15^{*}	A
	0	6	V
e<10ns		1.5	V
	60		$n s$

ent with be subject to switching frequency, bus voltage and thermals.

3	m	\sim	\sim	m	\sim	m	-	\sim	-	\sim	-	-	-	\sim	-	-	-	-	-	-	\bigcirc	-
E	-	\sim	m	-	in	\bigcirc	\wedge	∞	a	으	F	\simeq	$\stackrel{m}{\square}$	\pm	$\stackrel{\sim}{\square}$	\bullet	N	$\stackrel{\infty}{\sim}$	은	앗	$\bar{\sim}$	N

For More Information:

Please contact info@epc-co.com
 or your local sales representative

Visit our website:

www.epc-co.com
Sign-up to receive
EPC updates at bit.ly/EPCupdates or text"EPC" to 22828

EPC Products are distributed through Digi-Key.

www.digikey.com

Development Board / Demonstration Board Notification

The EPC9001 board is intended for product evaluation purposes only and is not intended for commercial use. As an evaluation tool, it is not designed for compliance with the European Union directive on electromagnetic compatibility or any other such directives or regulations.
As board builds are at times subject to product availability, it is possible that boards may contain components or assembly materials that are not RoHS compliant. Efficient Power Conversion Corporation (EPC) makes no guarantee that the purchased board is 100% RoHS compliant.
No Licenses are implied or granted under any patent right or other intellectual property whatsoever. EPC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
EPC reserves the right at any time, without notice, to change said circuitry and specifications.

[^0]: * Assumes inductive load, maximum current depends on die temperature - actual maximum curr \# Limited by time needed to 'refresh'high side bootstrap supply voltage.

