News

Sign up today to get the latest news and updates from EPC on new product announcements, applications work, and much more. Sign up for EPC email updates.

Efficient Power Conversion (EPC) Announces New Family of Radiation-Hardened Enhancement-Mode Gallium Nitride (eGaN) Transistors and Integrated Circuits for Demanding Space Applications

Efficient Power Conversion (EPC) Announces New Family of Radiation-Hardened Enhancement-Mode Gallium Nitride (eGaN) Transistors and Integrated Circuits for Demanding Space Applications

Efficient Power Conversion (EPC) introduces a new family of radiation-hardened (rad-hard) gallium nitride (GaN) products for power conversion solutions in critical spaceborne and other high reliability environments.

EL SEGUNDO, Calif.— June 2021 — EPC announces the introduction of a new family of radiation-hardened gallium nitride transistors and integrated circuits. With higher breakdown strength, faster switching speed, higher thermal conductivity and lower on-resistance, power devices based on GaN significantly outperform silicon-based devices. The lower resistance and gate charge enable faster power supply switching frequencies resulting in higher power densities, higher efficiencies, and more compact and lighter weight circuitry for critical spaceborne missions. Gallium nitride is also inherently radiation tolerant, making GaN-based devices a reliable, higher performing power transistor option for space applications.

Read more

Podcast - Spirit Behind the Screen: EPC's Alex Lidow and GaN Reliability

Podcast - Spirit Behind the Screen: EPC's Alex Lidow and GaN Reliability

In this episode, Alex Lidow and Marti McCurdy discusses EPC’s test-to-failure method in improving gallium nitride (GaN) devices. According to Alex, testing to failure has allowed EPC to tease out the exact stressors that cause failure and improve EPC’s GaN devices 10-100 times the reliability of commercial devices, and even 100 times reliability in space applications.

Alex and Marti discuss:

(1:30) Why test to fail
(4:14) Learning from failure data and stressors
(11:38) Safe Operating Area
(14:30) Mechanical stressors
(17:45) EPC Space

Listen now

Read more

GaN in Space Applications

GaN in Space Applications

Gallium nitride power device technology enables a new generation of power converters in space operating at higher frequencies, higher efficiencies, and greater power densities than everachievable before. GaN power devices can also exhibit superior radiation tolerance compared with Silicon MOSFETs depending upon their device design.

Power Electronics Europe
December, 2020
Read article

Read more

GaN HEMTs Outperform MOSFETs in Key Growth Applications

GaN HEMTs Outperform MOSFETs in Key Growth Applications

Silicon power MOSFETs have not kept pace with the evolutionary changes in the power electronics industry, where factors such as efficiency, power density, and smaller form factors are the main demands of the community. Silicon MOSFETs have reached their theoretical limits for power electronics, and with board space at a premium, power system designers need alternatives. Gallium nitride (GaN) is a high-electron-mobility transistor (HEMT) semiconductor that is adding real value in emerging applications.

EETimes
August, 2020
Read article

Read more

GaN Transistor for Space Missions

GaN Transistor for Space Missions

GaN power transistors are an ideal choice for power and RF applications to support extreme space missions. Through its new eGaN® solutions, EPC Space guarantees radiation hardness performance and SEE (single-event effects) immunity, with devices that are specifically designed for critical applications in commercial satellite space. These devices have exceptionally high electron mobility and a low-temperature coefficient with very low RDS(on) values.

EETimes
July, 2020
Read article

Read more

Radiation Performance of Enhancement-Mode Gallium Nitride Power Devices

Radiation Performance of Enhancement-Mode Gallium Nitride Power Devices

Enhancement-mode gallium nitride (eGaN®) technology enables a new generation of power converters in space operating at higher frequencies, higher efficiencies, and greater power densities than ever achievable before. eGaN devices also exhibit superior radiation tolerance compared with silicon MOSFETs.

Bodo’s Power Systems
June, 2020
Read article

Read more

EPC and VPT, Inc. Announce Joint Venture – EPC Space – Targeting the Radiation Hardened Power Electronics Market for Mission Critical Applications

EPC and VPT, Inc. Announce Joint Venture – EPC Space – Targeting the Radiation Hardened Power Electronics Market for Mission Critical Applications

EPC Space, a joint venture company, will provide advanced, high-reliability, gallium nitride (GaN) power conversion solutions for critical spaceborne and other high reliability environments.

EL SEGUNDO, CA and BLACKSBURG, VA – June 2020 – Efficient Power Conversion (EPC) Corporation and VPT, Inc., A HEICO company (NYSE:HEI.A) (NYSE:HEI)  announce the establishment of EPC Space LLC, a joint venture focused on designing and manufacturing radiation hardened (Rad Hard) GaN-on-silicon transistors and ICs packaged, tested, and qualified for satellite and high-reliability applications.

Read more

GaN in Space

GaN in Space

This article discussed an oft forgotten or little-noticed part of the spacecraft enabling travel into outer space---power management in the space vehicle. Wide bandgap semiconductors like gallium nitride (GaN), silicon carbide (SiC), as well as diamond, are looking to be the most promising materials for future electronic components since the discovery of silicon. These technologies, depending upon their design, offer huge advantages in terms of power capability (DC and microwave), radiation insensitivity, high temperature and high frequency operation, optical properties and even low noise capability. Therefore, wide bandgap components are strategically important for the development of next generation space-borne systems. eGaN devices are quickly gaining momentum in the space industry and we will see many more applications for them by NASA and commercial contractors in future programs like Artemis and other programs in countries around the globe pursuing efforts into Space.

Power Systems Design
November, 2019
Read article

Read more

GaN Powers Small Satellites

GaN Powers Small Satellites

Small satellites bring a more cost-effective approach to low-Earth-orbit (LEO) missions, helping to deliver low-cost internet access across the globe. For this application, GaN FETs partnered with a radiation tolerant pulse width modulation controller and GaN fet driver allow more efficient switching, higher frequency operation, reduced gate drive voltage and smaller solution sizes compared to the traditional silicon counterparts.

Electronics Weekly
July, 2019
Read article

Intersil Extends Leading Radiation Tolerant Portfolio with Gallium Nitride Power Conversion ICs for Satellite Applications

Intersil Extends Leading Radiation Tolerant Portfolio with Gallium Nitride Power Conversion ICs for Satellite Applications

MILPITAS, Calif., May 25, 2016 /PRNewswire/ -- Intersil Corporation (NASDAQ: ISIL), a leading provider of innovative power management and precision analog solutions, today announced plans to extend its market leading radiation tolerant portfolio to include Gallium Nitride (GaN) power conversion ICs for satellites and other harsh environment applications.

PR Newswire
May 25, 2016
Read article

Read more

Freebird Semiconductor Partners with EPC for Development of Radiation Hardened Gallium Nitride Power Conversion Systems for Satellite and Harsh Environment Applications

Freebird Semiconductor Partners with EPC for Development of Radiation Hardened Gallium Nitride Power Conversion Systems for Satellite and Harsh Environment Applications

Freebird Semiconductor and Efficient Power Conversion (EPC) have entered into an agreement whereby Freebird will develop products for use in high reliability space and harsh environment applications based upon eGaN® power transistors and integrated circuits.

NORTH ANDOVER, MA. — April 2016 — Freebird Semiconductor Corporation, North Andover, Massachusetts announces the signing of an agreement with Efficient Power Conversion Corporation (EPC), the leading provider of enhancement-mode gallium nitride power transistors to develop products for use in high reliability, space, and harsh environment applications based upon EPC’s eGaN® technology.

Read more
RSS
12