News

Sign up today to get the latest news and updates from EPC on new product announcements, applications work, and much more. Sign up for EPC email updates.

Thoughtful Board Design Unlocks the Promise of GaN

Thoughtful Board Design Unlocks the Promise of GaN

Power transistors with faster switching speeds will enable power supplies with smaller form factors and higher energy transfer efficiencies. Indeed, the elimination of heat sinks will give designers the ability to visualize entirely new form factors for power bricks and modules, including those enabling wireless power transfers. Gallium-nitride (GaN) transistors fabricated on silicon substrates can boost efficiencies and help shrink the footprint of power supplies.

Electronic Design
March, 2016
Read article

Read more

5G base station architecture: The potential semiconductor solutions

5G base station architecture: The potential semiconductor solutions

eGaN technology is expected to be one of the most important solutions to power efficiency in base station infrastructure for 5G; the peak-to-average ratios will be worse in 5G. Envelope tracking is obvious right now as one way eGaN power transistors will do this, but over the next 3 to 5 years more applications will emerge as eGaN technology progresses.

EDN
Steve Taranovich
July 17, 2015
Read Article

Read more

New Chips Provide a Spark for Wireless Charging

New Chips Provide a Spark for Wireless Charging

EPC garners the attention of MIT Technology Review with its new products targeted for wireless charging applications. Recognizing EPC as a catalyst for jump-starting the market for wireless power systems, the author highlights the need for universally accepted technology standards. He reinforces his position quoting Alex Lidow saying that “…convenience, cost, and efficiency” are all factors needed for broad adoption of any standard…

MIT Technology Review
July 15, 2015
Read article

Read more

Revenge Fuels Energy Fight

Revenge Fuels Energy Fight

Power conversion involves creating tiny devices that convert electricity from one form to another, enabling all manner of electrical gadgets to function. Till now, silicon had been the preferred medium for power conversion processors, but as that element reaches the limits of its efficiency, attention has focused on new materials.

Los Angeles Business Journal
June 21, 2015
Read article

Read more

IDT and EPC Collaborate to Integrate Gallium Nitride and Silicon for Faster, Higher Efficiency Semiconductor Devices

IDT and EPC Collaborate to Integrate Gallium Nitride and Silicon for Faster, Higher Efficiency Semiconductor Devices

Integrated Device Technology, Inc. (IDT®) (NASDAQ: IDTI) today announced its collaboration with Efficient Power Conversion (EPC) to develop technology based on Gallium nitride (GaN), a semiconductor material widely recognized for its speed and efficiency. Under their collaboration, the companies will explore integrating EPC’s eGaN® technology with leading IDT solutions.

Read full press release

Read more

Gallium Nitride Power Transistors Priced Cheaper Than Silicon

Gallium Nitride Power Transistors Priced Cheaper Than Silicon

Last week, El Segundo, Calif.-based Efficient Power Conversion, announced that its offering two types of power transistors made from gallium nitride that it has priced cheaper than their silicon counterparts. “This is the first time that something has really been higher performance and lower cost than silicon,” CEO Alex Lidow says. “Gallium nitride has taken the torch and is now running with it.”

IEEE Spectrum
May 8, 2015
Read article

Read more

Moore's Law at 50: The past and future

Moore's Law at 50: The past and future

“Moore’s Law is morphing into something that is about new materials,” said Alex Lidow, a semiconductor industry veteran and CEO of Efficient Power Conversion (EPC). EPC is making a possible silicon replacement, gallium nitride (GAN), which is a better conductor of electrons, giving it performance and power-efficiency advantages over silicon, Lidow said. GAN is already being used for power conversion and wireless communications, and could make its way to digital chips someday. “For the first time in 60 years there are valid candidates where it’s about superior material rather than smaller feature size,” Lidow said.

Read article
Network World
April 17, 2015

Read more

Adios, silicon: Why exotic designs are the future for the chips in your gadgets

Adios, silicon: Why exotic designs are the future for the chips in your gadgets

Chip advances have powered one technology revolution after another: PCs, the Internet, smartphones, smartwatches and, soon, self-driving cars. One company betting its future on III-V materials is Efficient Power Conversion, a 34-person startup led by Chief Executive Alex Lidow. EPC already is seeing steady revenue growth from devices that incorporate a III-V layer made of gallium nitride (GaN). In 2016 or 2017 he expects to adapt the gallium nitride manufacturing process to work for the logic circuits that do the thinking in computer processors. Because of gallium nitride's electrical properties, "you immediately get a thousand times potential in improvement" over conventional silicon, he said.

Read article
CNET.com
April 17, 2015

Read more

Move over, silicon. Gallium nitride chips are taking over

Move over, silicon. Gallium nitride chips are taking over

Dean Takahashi at VentureBeat profiles Alex Lidow. Silicon chips have had a decades-long run as the foundation for modern electronics. But a new kind of chip, based on the compound material gallium nitride (GaN), promises to unseat silicon because it has higher performance, less power consumption, and lower cost.

Read article
VentureBeat
April 2, 2015

Read more

GaN technology will transform the future

For the first time in 60 years, a new higher-performance semiconductor technology is less expensive to produce than the silicon counterpart. Gallium nitride (GaN), has demonstrated both a dramatic improvement in transistor performance and the ability to be produced at a lower cost than silicon. GaN transistors have unleashed new applications as a result of their ability to switch higher voltages and higher currents faster than any transistor before. These extraordinary characteristics have ushered in new applications capable of transforming the future. But this is just the beginning.

Read article

EDN
By: Alex Lidow
January, 2015

Read more

Panasonic breathes new life into Technics – features GaN for high speed switching

Technics is back. Panasonic has unveiled the first new hi-fi products from the highly-regarded brand in 6 years. The new Reference Class system is made up of three components – a stereo power amp, a network audio control player and a speaker system. The amp uses a JENO Digital Engine to eliminate jitter and nip noise in the bud, and Load Adaptive Phase Calibration (LAPC) for flat amplitude-phase frequency delivery. It features GaN for high speed switching while keeping signal loss low, a proprietary digital link input, analog XLR input, analog RCA input, bi-wiring speaker terminals, and a silent linear power supply.

Read article

Read more

How to measure the world's fastest power switch

Gallium Nitride (GaN) FETS are poised to replace silicon power devices in voltage regulators and DC-DC power supplies. Their switching speeds are significantly faster and their RDS(on) is lower than silicon MOSFETS. That can lead to higher power efficiency power sources, which is good for all of us. If you're designing power circuits with GaN devices, you need a grasp of the device's switching speed.

Read article

Read more

EPC: GaN Ambition

Intent on flooding power device markets with GaN-on-silicon FETs, Alex Lidow, EPC, talks to Compound Semiconductor about future market opportunities.

Compound Semiconductor
July, 2014
Read the article

Read more

Power GaN Market - 80% ANNUAL GROWTH FROM 2016-2020!

Overall, 2020 could see an estimated device market size of almost $600M, leading to approximately 580,000 x 6” wafers to be processed. Ramp-up will be quite impressive starting in 2016, at an estimated 80% CAGR through 2020, based upon a scenario where EV/HEV begins adopting GaN in 2018-2019. The power supply/PFC segment will dominate the business from 2015-2018, ultimately representing 50% of device sales. At that point, automotive will then catch-up.

Yole Development
June, 2014
Read More

Read more

Yole: Power To Dominate GaN-On-Silicon Market

Yole Développement is releasing, this week, the "GaN-on-Si Substrate Technology and Market for LED and Power Electronics" report. Analysts believe that GaN-on-silicon technology will be widely adopted by power electronics applications. The power electronics market addresses applications such as AC to DC or DC to AC conversion, which is always associated with substantial energy losses that increase with higher power and operating frequencies. Incumbent silicon based technology is reaching its limit and it is difficult to meet higher requirements.

http://powerelectronicsworld.net/article/0/79693-yole-power-to-dominate-gan-on-silicon-market.html

Read more
RSS
12345