GaN Talk a blog dedicated to crushing silicon
Term: mild hybrid
2 post(s) found

How to Design a 2 kW 48 V/12 V Bi-Directional Power Module with GaN FETs for 48 V Mild Hybrid Electric Vehicles

How to Design a 2 kW 48 V/12 V Bi-Directional Power Module with GaN FETs for 48 V Mild Hybrid Electric Vehicles
Aug 25 2022

Environmental pressures are creating pressure to quickly adopt newer, cleaner, and more efficient transportation options.  In 2025, 1 in 10 vehicles sold are expected to be a more fuel efficient 48 V mild hybrid.  These systems will require a 48V – 12V bidirectional converter, with power ranging from 1.5 kW to 6 kW. The design priorities for these systems are size, cost, and high reliability. GaN power conversion solutions are perfect to support a 48 V to 12 V bidirectional converter used in these newer models.

A new reference design demo board, the EPC9165, is available to help jump start the design of a 2 kW bi-directional converter.  The EPC9165 is a synchronous buck/boost converter with other supporting circuitry including current sensors and temperature sensor.  The EPC9528 controller board ships with the EPC9165 to incorporate digital control and housekeeping power supply; this board uses the dsPIC33CK256MP503 digital controller from Microchip.

How to Design a 12 V to 48 V / 500 W 2-Phase Boost Converter Using eGaN FETs and the Renesas ISL81807 Controller with Same BOM Size as Silicon, Offering Superior Efficiency and Power Density

How to Design a 12 V to 48 V / 500 W 2-Phase Boost Converter Using eGaN FETs and the Renesas ISL81807 Controller with Same BOM Size as Silicon, Offering Superior Efficiency and Power Density
Jan 07 2022

48 V is being adopted in many applications, including AI systems, data centers, and mild hybrid electric vehicles. However, the conventional 12 V ecosystem is still dominant, so a high power density 12 V to 48 V boost converter is required. The fast-switching speed and low RDS(on) of eGaN FETs can help address this challenge. In this post, the design of a 12 V to 48 V, 500 W DC-DC power module using eGaN® FETs directly driven by eGaN FET compatible ISL81807 controller IC from Renesas in the simple and low-cost synchronous boost topology is evaluated.