GaN Talk a blog dedicated to crushing silicon
Term: 48V
19 post(s) found

Nov 12, 2019

The Time for Disruption is Now − GaN Makes a Frontal Attack on Silicon Power MOSFETs

Alex Lidow, Ph.D., CEO and Co-founder

Silicon has been around long enough. It’s time for a younger and far more fit challenger to take over semiconductor material dominance.

When I first started developing power devices 44 years ago, the “king of the hill” was the silicon power bipolar transistor.  In 1978 International Rectifier (IRF) launched power MOSFETs as a faster alternative to the slower and aging bipolar devices.  The early adopters of the power MOSFET were applications where the bipolar just was not fast enough.  The signature example for its adoption was the switching power supply for the desktop computer; first at Apple, and then at IBM

Apr 24, 2019

Building the Smallest, Most Cost Effective, Highest Efficiency Non-isolated 48 V to 5 - 12 V DC to DC Converters using latest Generation 100 V eGaN FETs

Rick Pierson, Senior Manager, Digital Marketing

The latest generation of 100 V GaN devices increase the efficiency, shrink the size, and reduce system cost for 48 V power conversion. The EPC2045, shown in figure 1, is rated at 100 V with 7 mΩ on- resistance that can carry a continuous current of 16 A. The EPC2045 is nearly one-tenth the footprint of a comparable Si MOSFET and has lower parasitic capacitances and can switch much faster than equivalent silicon devices, yielding lower switching loss even at higher switching frequency.

The EPC2053, shown in figure 2, is rated at 100 V with 4 mΩ on-resistance that can carry a continuous current of 32 A. The EPC2053 has lower parasitic capacitances and on-resistance than its silicon counterparts, yielding faster switching speed and lower power losses even at higher switching frequencies. These characteristics enable increasing the output power while shrinking the volume of the converter.

Apr 03, 2019

Exceeding 98% Efficiency in a Compact 48 V to 12 V, 900 W LLC Resonant Converter Using eGaN FETs

Rick Pierson, Senior Manager, Digital Marketing

Motivation

The rapid expansion of the computing and telecommunication market is demanding an ever more compact, efficient and high power density solution for intermediate bus converters. The LLC resonant converter is a remarkable candidate to provide a high power density and high-efficiency solution. eGaN® FETs with their ultra-low on-resistance and parasitic capacitances, benefit LLC resonant converters by significant loss reduction that is challenging when using Si MOSFETs. A 48 V to 12 V, 900 W, 1 MHz LLC DC to DC transformer (DCX) converter employing eGaN FETs such as EPC2053 and EPC2024 is demonstrated, yielding a peak efficiency of 98.4% and a power density exceeding 1500 W/in3.

Mar 12, 2019

How to Exceed 98% Efficiency in a Compact 48 V to 6 V, 900 W LLC Resonant Converter Using eGaN FETs

Rick Pierson, Senior Manager, Digital Marketing

The rapid expansion of the computing and telecommunication market is demanding an ever more compact, efficient and high power density solution for intermediate bus converters. The LLC resonant converter is a remarkable candidate to provide a high power density and high efficiency solution. eGaN® FETs with their ultra-low on-resistance and parasitic capacitances, benefit LLC resonant converters by significant loss reduction that is challenging when using Si MOSFETs. A 48 V to 6 V, 900 W, 1 MHz LLC DC to DC transformer (DCX) converter employing eGaN FETs such as EPC2053 and EPC2023 is demonstrated, yielding a peak efficiency of 98.1% with a specific power of 48 W/cm2 (308 W/in2) and power density of 69 W/cm3 (1133 W/in3).

Dec 14, 2018

How to Get More Power Out of a High-Density eGaN-Based Converter with a Heatsink

Rick Pierson, Senior Manager, Digital Marketing

eGaN FETs and ICs enable very high-density power converter design, owing to their compact size, ultra-fast switching, and low on-resistance. The limiting factor for output power in most high-density converters is junction temperature, which prompts the need for more effective thermal design. The chip-scale packaging of eGaN also offers six-sided cooling, with effective heat extraction from the bottom, top, and sides of the die. This application note presents a high-performance thermal solution to extend the output current capability of eGaN-based converters.

Nov 29, 2018

GaN Rising as Power Chain Option as Energy Demand, Cost Grows

Rick Pierson, Senior Manager, Digital Marketing

This post was originally published by Bill Kleyman on November 5, 2018 on the Data Center Frontier  web site. Learn more about eGaN technology and EPC GaN solutions for the Data Center.

The data center is an ever-changing entity and part of our technological landscape. But sometimes the biggest changes in the colocation industry happen at the core of what makes a data center tick, and may not be visible at first glance. In this instance, we’re talking about data center power, and the potential of creative solutions on the market, such as using Gallium nitride (GaN) in power conversion equipment.

Oct 24, 2018

How to Design an eGaN FET-Based Power Stage with an Optimal Layout

Rick Pierson, Senior Manager, Digital Marketing

Motivation

eGaN FETs are capable of switching much faster than Si MOSFETs, requiring more careful consideration of PCB layout design to minimize parasitic inductances. Parasitic inductances cause higher overshoot voltages and slower switching transitions. This application note reviews the key steps to design an optimal power stage layout with eGaN FETs, to avoid these unwanted effects and maximize the converter performance.

Impact of parasitic inductance on switching behavior

As shown in figure 1, three parasitic inductances can limit switching performance 1) power loop inductance (Lloop), 2) gate loop inductance (Lg), and 3) common-source inductance (Ls). The chip-scale package of eGaN FETs eliminates any significant inductance within the transistor itself, leaving the printed circuit board (PCB) as the main contributor. Each parasitic inductance is a consequence of the total area encompassed by the dynamic current path and its return loop. (See WP009: Impact of Parasitics on Performance).

Oct 07, 2018

A 95%-Efficient 48 V-to-1 V/10 A VRM Hybrid Converter

Rick Pierson, Senior Manager, Digital Marketing

Gab-Su Seo1,2, Ratul Das1, and Hanh-Phuc Le1
1Department of Electrical, Computer, and Energy Engineering, University of Colorado
2Power Systems Engineering Center, National Renewable Energy Laboratory, Colorado, U.S.A.

With drastically increasing demands for cloud computing and big data processing, the electric energy consumption of data centers in the U.S. is expected to reach 73 billion kWh by 2020 [1], which will account for approximately 10% of the U.S total electric energy consumption. A large portion of this consumption is caused by losses from inefficient power delivery architectures that require a lot of attention for improvements [2], [3].

May 01, 2018

eGaN Technology is Coming to Cars

Alex Lidow, Ph.D., CEO and Co-founder

Automotive technology has entered a renaissance with the emergence of autonomous cars and electric propulsion as the driving forces.  IHS Markit estimates that 12 million cars will be autonomous by 2035 and 32 million cars will have electric propulsion according to Bloomberg New Energy Finance, Marklines.  Both trends translate into a large growth in demand for power semiconductors.  This is also happening at a time when silicon is reaching its performance limits in the world of power conversion, thus opening a huge new market for power devices based on gallium nitride grown on a silicon substrate (GaN-on-Si).