GaN Talk a blog dedicated to crushing silicon

May 01, 2018

eGaN Technology is Coming to Cars

Alex Lidow, Ph.D., CEO and Co-founder

Automotive technology has entered a renaissance with the emergence of autonomous cars and electric propulsion as the driving forces.  IHS Markit estimates that 12 million cars will be autonomous by 2035 and 32 million cars will have electric propulsion according to Bloomberg New Energy Finance, Marklines.  Both trends translate into a large growth in demand for power semiconductors.  This is also happening at a time when silicon is reaching its performance limits in the world of power conversion, thus opening a huge new market for power devices based on gallium nitride grown on a silicon substrate (GaN-on-Si). 

Mar 21, 2018

The Growing Ecosystem for GaN Power Conversion

Steve Colino, Vice President, Strategic Technical Sales

There are many reasons to increase frequency of power conversion.  Fundamentally, these reasons boil down to size/weight reduction, and cost reduction.  There are several components in the design of a power system that must perform efficiently at the targeted increased switching frequencies.  These include power switches, power switch drivers, controllers, magnetics, and capacitors. Taken collectively, these components represent the high frequency power conversion ecosystem.  Without any of these elements, the benefits of increased frequency cannot be fully realized.

Feb 28, 2018

APEC 2018: GaN Revolution in the World of Power Electronics

Rick Pierson, Senior Manager, Digital Marketing

Come see the world’s smallest, most efficient, and lowest cost DC-DC converters!  eGaN technology makes this, and much more possible and will be on full display at this year’s American Power Engineering Conference, APEC, where power engineers from around the world gather to see and learn about the latest innovations and products available in the world of power electronics.

EPC GaN experts will be presenting a half-day educational seminar on the state of GaN technology and its application to leading-edge power electronics. In addition, EPC will deliver six technical sessions, as well as demonstrate eGaN applications in our booth and customer suite.

Jan 01, 2018

Join EPC at CES 2018

Nick Cataldo, Senior Vice President for Global Sales and Marketing

We are quite excited about this year’s CES being held in Las Vegas from January 9th through the 12th.  Our excitement is grounded in the fact that we will be showing the power of GaN technology in two locations – within the AirFuel™ Alliance booth at the Sands Hotel and in our hospitality suite at the Venetian hotel!

Dec 05, 2017

GaN Puts the “D” in LiDAR for Autonomous Vehicles… Enhancing the “Eyesight” of Self-Driving Cars

Rick Pierson, Senior Manager, Digital Marketing

Did you see that car? The one with what looks like antlers on the top? Most people would be hard-pressed to miss a self-driving car navigating about public roads. Most autonomous vehicles, or self-driving cars as they are also known, are outfitted with a myriad of sensors, cameras, and even lasers that serve a critical function – providing information about the vehicle’s surroundings. These sensors and cameras are one means of identifying pedestrians, bicycle riders, lane lines, street signs, lights, traffic cones, and other visual details that are important for safe driving.

Dec 05, 2017

Designing Manufacturable and Reliable Printed Circuit Boards Employing Chip-Scale eGaN FETs

Michael de Rooij, Ph.D., Vice President, Applications Engineering

Written by Michael de Rooij and Alana Nakata - Efficient Power Conversion

Published in: PCIM Europe 2017; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management; Proceedings of

eGaN FETs, which are available in non-traditional chip scale packages (CSP) as land grid array (LGA) and/or ball grid array (BGA) formats, have repeatedly demonstrated higher power density and higher efficiency performance than equivalent MOSFETs across various applications [1, 2]. Those improvements are contingent upon proper layout practices documented extensively in [1, 3] that minimize unwanted parasitic elements. Over the seven years since eGaN FETs were first launched into the market there have been a total of 127 device failures out of a total of more than 17 billion hours in actual use in the field, 75 of which were a result of poor assembly technique or poor printed circuit board (PCB) design practices [4]. Designers are becoming more familiar with the PCB design rules that affect manufacturability and are less forgiving compared to MOSFETs due to their relatively smaller sizes. This paper will cover the various guidelines for PCB design that maximize the performance of eGaN FETs and reliability yet still rely on existing PCB manufacturing capabilities.

Oct 18, 2017

More Data, More Apps, More Mobile…

Renee Yawger, Director of Marketing

I don’t know about you, but in my house the number of mobile devices seems to multiply overnight, along with the ways they are used.  On any given night, you may find me on a GoToMeeting conference on my laptop, my husband on a video Skype chat from his phone with his dad in Florida, my oldest son turning in an assignment on Google Classroom from his laptop, my younger son streaming videos on his tablet, and my second grader recording and posting a music.ly on her phablet.  And when we travel, these devices come with us so they need to be small and lightweight enough to come along for ride! 

This all translates into ever-increasing power demands for computing and telecom systems and the conflicting desire for small, lightweight form factors, and extended battery life. To meet these demands, point-of-load (POL) DC-DC converters (the power engines) need to be designed to be small sized and as efficient as possible. These demands translate to ever faster switching frequencies of the transistors used in the power conversion running these devices. Notebook PCs, tablets, and phablets are especially sensitive to this need as our dependency on these devices and the demands we make on them continues to grow. 

Sep 30, 2017

Nobody Likes Power Cords! Wireless Power is Happening

Alex Lidow, Ph.D., CEO and Co-founder

I have yet to meet someone who likes power cords.

Take for example Keith. In figure 1 is a photo of all the power-related accessories Keith lugs around in his backpack to make certain he will be able to run his phone, tablet, and computer wherever he goes. What Keith and others may not realize is that the technology is available that can eliminate every one of these cords – today! So, why is it taking so long for wireless power solutions to become a household technology?

Certainly, wireless charging is not a new topic having been talked about for quite a while. But now, with a recently developed innovative approach to the design of transmission and receiver antennae (coils), ubiquitous wireless power is ready to be incorporated into our daily lives throughout furniture, walls, and floors to efficiently and economically power all the gadgets we need for our electronic lives.

Jul 28, 2017

48V-to-1V Conversion – the Rebirth of Direct-to-Chip Power

Rick Pierson, Senior Manager, Digital Marketing

This post was originally published May 26, 2017 on the PowerPulse.net web site . Learn more about eGaN technology and EPC GaN solutions for 48 V to Point-of-Load.

During last week’s PCIM Europe event in Nuremberg, Germany, direct 48V-to-1V power conversion architectures were a significant topic, mostly outside of the exhibit floor. Vicor was quietly showing its latest generation of 48V direct-to-chip power components. Ericsson Power Modules and Efficient Power Conversion were holding invitation-only meetings where future designs of 48V direct to load power conversion architectures were the focus of the discussions. By the end of 2017, several vendors are expected to be offering dc-dc converters delivering 48V-to-1V direct conversion.

Jun 21, 2017

How2 Cut The Power Cord: Wireless Power Is Ready For Prime Time

Alex Lidow, Ph.D., CEO and Co-founder

This post was originally published on the How2Power web site. Learn more about eGaN technology here and EPC GaN solutions for wireless power here.

Wireless charging is not a new topic—it has been talked about for quite a while. Unfortunately, it has not seen widespread consumer acceptance. But, with a recently developed innovative approach to the design of transmission coils, wireless power is ready for widespread application.