GaNの話シリコンを粉砕するために捧げたブログ

Pulsing 1550 nm Lasers for Lidar

Pulsing 1550 nm Lasers for Lidar
4 20 2021

Pulsed lidar systems typically use either 905 nm or 1550 nm lasers for optical emission.  Above 1400 nm, various elements of the eye absorb the light, impeding it from reaching and damaging the retina.  As laser power is increased, not all of it is absorbed, and at some point, retinal damage may occur.  Since 905 nm light does not get absorbed, it does reach the retina, so care must be used to limit the energy density to prevent damage.

If the decision is to use 1550 nm light, efficiency differences in the semiconductor laser make it necessary to use higher current for the same optical power emitted compared with 905 nm light.  Additionally, the same characteristics that allow the light to be absorbed by the eye before getting to the retina cause it to be absorbed by the atmosphere.  This phenomenon is amplified as humidity increases to fog, rain, or snow.  The drive power required for a 1550 nm laser may be up to 10 times higher than for a 905 nm laser based system.  Fortunately, there is a solution to deliver the power necessary to drive 1550 nm lasers while maintaining the edge speed and pulse required for high resolution in pulsed lidar applications.

GaN + Digital Control + High-Performance Magnetics
Designing an Ultra-thin, Highly Efficient (>97%), Multilevel DC-to-DC Converter

GaN + Digital Control + High-Performance Magnetics<br>Designing an Ultra-thin, Highly Efficient (>97%), Multilevel DC-to-DC Converter
4 07 2021

GaN-based solutions coupled with digital control and high-performance magnetics can increase efficiency, shrink the size, and reduce system costs for high density computing applications like ultra-thin laptops and high-end gaming systems.

As computers, displays, smart phones and other consumer electronics systems have become thinner and more powerful over the past decade, there is increasing demand for addressing the challenge of thinner solutions while extracting more power out of limited space.

The multilevel converter is an exceptional candidate to shrink the size of the magnetic components and achieve high efficiency in a compact solution. Leveraging the advantages of eGaN® FETs, such as small size and low loss, further enhances the performance of a multilevel solution. This blog will evaluate the EPC9148, a 48 V to 20 V, 250 W three-level converter using eGaN FETs and digital control which achieves a peak total system efficiency of 97.8% and only 4.1 mm component height.

eToF™ Laser Driver ICs for Advanced Autonomy Lidar

eToF™ Laser Driver ICs for Advanced Autonomy Lidar
3 22 2021

Co-written by Steve Colino

Laser drivers for light distancing and ranging (lidar) are used in a pulsed-power mode. What are the basic requirements for these laser drivers?

A new family of integrated laser driver ICs meets all these requirements.  The first release, the EPC21601 laser driver IC, integrates a 40 V, 10 A FET with integrated gate driver and 3.3 V logic level input in a single chip for time-of-flight (ToF) lidar systems used in robotics, surveillance systems, drones, autonomous cars, and vacuum cleaners. This chip offers frequency capability up to 200 MHz in a low inductance, economical, 1 mm x 1.5 mm BGA package.

Why GaN for DC-DC Space Designs

Why GaN for DC-DC Space Designs
3 03 2021

Power electronics engineers are constantly working towards designs with higher efficiency and higher power density while maintaining high reliability and minimizing cost. Advances in design techniques and improved component technologies enable engineers to consistently achieve these goals. Power semiconductors are at the heart of these designs and their improvements are vital to better performance. In this EPC space blog, we will demonstrate how GaN power semiconductors allow for innovation in the harsh radiation environments of space applications.

GaN power semiconductors offer designers in the high reliability market a sudden and significant improvement in electrical performance over their silicon power MOSFET predecessors. Table 1 compares radiation hardened GaN and Si power semiconductor device characteristics important for circuit designers to increase efficiency and power density in their converter.

How GaN is Revolutionizing Motor Drive Applications

How GaN is Revolutionizing Motor Drive Applications
2 09 2021

Rethinking the Ordinary and Overcoming Mental Biases

Motor drive applications span several markets: industrial, appliance, and automotive. A commonality that occurs regardless of market is that when a new technology is proposed, it faces resistance to its adoption; after all, it is human nature to stick with what is known and resist change.

Reduce Audible Noise in Motor Drive Designs Using eGaN FETs and ICs

Reduce Audible Noise in Motor Drive Designs Using eGaN FETs and ICs
1 15 2021

Brushless DC (BLDC) motors are popular and finding increasing application in robotics, e-mobility, and drones. Such applications have special requirements such as lightweight, small size, low torque ripple, low audible noise, and extreme precision control.  To address these needs, the inverters powering the motors need to operate at higher frequency but require advanced techniques to reduce the resultant higher power loss. Enhancement-mode gallium nitride (eGaN ®) transistors and integrated circuits offer the ability to operate at much higher frequencies without incurring significant losses. 

How to Design a Bi-Directional 1/16th Brick 48 V-12 V Converter Using Monolithic GaN ePower™ Stage

How to Design a Bi-Directional 1/16th Brick 48 V-12 V Converter Using Monolithic GaN ePower™ Stage
12 15 2020

Brick DC-DC converters are widely used in data center, telecommunication and automotive applications, converting a nominal 48 V bus to (or from) a nominal 12 V bus. Advances in GaN integrated circuit (IC) technology have enabled the integration of the half bridge and gate drivers, resulting in a single chip solution that simplifies layout, minimizes area, and reduces cost.

This application note discusses the design of a digitally controlled bi-directional 1/16th brick converter using the integrated GaN power stage for 48 V-to-12 V application, with up to 300 W output power, and peak efficiency of 95%.

The standard dimension of the 1/16th brick converter is 33 x 22.9 mm (1.3 x 0.9 inch). The height limit for this design is set to 10 mm (0.4 inch).

200 VのeGaN® FETを使って、高効率、2.5 kW、汎用入力電圧範囲、力率補正(PFC)の400 Vの整流器を設計する方法

200 VのeGaN<sup>®</sup> FETを使って、高効率、2.5 kW、汎用入力電圧範囲、力率補正(PFC)の400 Vの整流器を設計する方法
11 03 2020

謝辞:このアプリケーション・ノートと関連ハードウエアは、米テキサス大学オースティン校のSemiconductor Power Electronics Center(SPEC)と共同で開発されました。

動機

クラウド・コンピューティング、ウエアラブル、機械学習、自動運転、すべてのモノがインターネットにつながるIoTなどのアプリケーションの拡大によって、データ集約型の世界へと私たちを駆り立て、データセンターと電力消費に対する需要が増大しています [1,2]。交流から直流へのスイッチング電源の効率、電力密度、コストの重要性は、eGaN FETが超高効率力率補正(PFC)のフロントエンド整流器ソリューションを可能にして解決できる革新的なソリューションを牽引し、これに焦点を当てたアプリケーション・ノートHow2AppNoteもあります。

新しい100 VのeGaNデバイスは、成熟したシリコン・パワーMOSFETよりも、ベンチマーク性能が向上します

新しい100 VのeGaNデバイスは、成熟したシリコン・パワーMOSFETよりも、ベンチマーク性能が向上します
9 22 2020

Efficient Power Conversion(EPC)は、定格100 Vの成熟したシリコン・パワーMOSFETとeGaNトランジスタの間の性能の差を広げています。新しい第5世代「プラス」デバイスは、以前の第5世代製品と比べて、オン抵抗RDS(on)が約20%小さく、直流定格が高くなっています。この性能向上は、厚い金属層の追加と、はんだボールから、はんだバーへの変更によるものです。

新しい耐圧200 VのeGaNデバイスは、成熟したシリコン・パワーMOSFETに比べて性能が2倍です

新しい耐圧200 VのeGaNデバイスは、成熟したシリコン・パワーMOSFETに比べて性能が2倍です
8 21 2020

Efficient Power Conversion(EPC)は、定格200 Vの成熟したシリコン・パワーMOSFETとeGaN®トランジスタの間の性能の差を2倍にしています。新しい第5世代デバイスのサイズは、前世代の約半分です。この性能向上は、図1に示すように、2つの主な設計上の違いによります。左側は、第4世代の200 Vのエンハンスメント・モードGaNオン・シリコンの構造の断面図です。右側の断面図は、第5世代の構造で、ゲート電極とソース電極との間の距離を短くし、厚い金属層が追加されています。これらの改善に加えて、示されていない他の多くの改善によって、新世代FETの性能は2倍になりました。