GaNの話シリコンを粉砕するために捧げたブログ

The Growing Ecosystem for eGaN FET Power Conversion

The Growing Ecosystem for eGaN FET Power Conversion
5 18 2019

eGaN® FET-based power conversion systems offer higher efficiency, increased power density, and lower overall system cost than Si-based alternatives. These advantageous characteristics have spurred the presence of an ever increasing ecosystem of power electronics components such as gate drivers, controllers, and passive components that specifically enhance eGaN FET performance. Some examples of eGaN FETs are shown in figure 1.

Building the Smallest, Most Cost Effective, Highest Efficiency Non-isolated 48 V to 5 - 12 V DC to DC Converters using latest Generation 100 V eGaN FETs

Building the Smallest, Most Cost Effective, Highest Efficiency Non-isolated 48 V to 5 - 12 V DC to DC Converters using latest Generation 100 V eGaN FETs
4 24 2019

The latest generation of 100 V GaN devices increase the efficiency, shrink the size, and reduce system cost for 48 V power conversion. The EPC2045, shown in figure 1, is rated at 100 V with 7 mΩ on- resistance that can carry a continuous current of 16 A. The EPC2045 is nearly one-tenth the footprint of a comparable Si MOSFET and has lower parasitic capacitances and can switch much faster than equivalent silicon devices, yielding lower switching loss even at higher switching frequency.

The EPC2053, shown in figure 2, is rated at 100 V with 4 mΩ on-resistance that can carry a continuous current of 32 A. The EPC2053 has lower parasitic capacitances and on-resistance than its silicon counterparts, yielding faster switching speed and lower power losses even at higher switching frequencies. These characteristics enable increasing the output power while shrinking the volume of the converter.

Exceeding 98% Efficiency in a Compact 48 V to 12 V, 900 W LLC Resonant Converter Using eGaN FETs

Exceeding 98% Efficiency in a Compact 48 V to 12 V, 900 W LLC Resonant Converter Using eGaN FETs
4 03 2019

Motivation

The rapid expansion of the computing and telecommunication market is demanding an ever more compact, efficient and high power density solution for intermediate bus converters. The LLC resonant converter is a remarkable candidate to provide a high power density and high-efficiency solution. eGaN® FETs with their ultra-low on-resistance and parasitic capacitances, benefit LLC resonant converters by significant loss reduction that is challenging when using Si MOSFETs. A 48 V to 12 V, 900 W, 1 MHz LLC DC to DC transformer (DCX) converter employing eGaN FETs such as EPC2053 and EPC2024 is demonstrated, yielding a peak efficiency of 98.4% and a power density exceeding 1500 W/in3.

How to Exceed 98% Efficiency in a Compact 48 V to 6 V, 900 W LLC Resonant Converter Using eGaN FETs

How to Exceed 98% Efficiency in a Compact 48 V to 6 V, 900 W LLC Resonant Converter Using eGaN FETs
3 12 2019

The rapid expansion of the computing and telecommunication market is demanding an ever more compact, efficient and high power density solution for intermediate bus converters. The LLC resonant converter is a remarkable candidate to provide a high power density and high efficiency solution. eGaN® FETs with their ultra-low on-resistance and parasitic capacitances, benefit LLC resonant converters by significant loss reduction that is challenging when using Si MOSFETs. A 48 V to 6 V, 900 W, 1 MHz LLC DC to DC transformer (DCX) converter employing eGaN FETs such as EPC2053 and EPC2023 is demonstrated, yielding a peak efficiency of 98.1% with a specific power of 48 W/cm2 (308 W/in2) and power density of 69 W/cm3 (1133 W/in3).

CESはイノベーションの世界的な舞台です

CESはイノベーションの世界的な舞台です
12 30 2018

1970年の最初のビデオ・テープ・レコーダ(VTR)から無線で充電できる世界初のノート・パソコンまで、世界を変える革新は、世界中のイノベーションが集まる場所CESで発表されました。

ヒートシンク付き高電力密度eGaNベース・コンバータの出力電力を一段と高める方法

ヒートシンク付き高電力密度eGaNベース・コンバータの出力電力を一段と高める方法
12 14 2018

eGaN® FETとICは、小型、超高速スイッチング、低オン抵抗という特徴によって、非常に高電力密度のパワー・コンバータを設計できます。ほとんどの高電力密度コンバータの出力電力を制限している要因は接合部温度であり、より効果的な熱設計が求められます。eGaN のチップスケール・パッケージは、チップの上面、下面、および側面から効果的に熱を逃がし、6面冷却を実現できます。このアプリケーション・ノートでは、eGaN ベース・コンバータの出力電流能力を高めるための高性能の熱ソリューションを紹介します。

GaN Rising as Power Chain Option as Energy Demand, Cost Grows

GaN Rising as Power Chain Option as Energy Demand, Cost Grows
11 29 2018

This post was originally published by Bill Kleyman on November 5, 2018 on the Data Center Frontier  web site. Learn more about eGaN technology and EPC GaN solutions for the Data Center.

The data center is an ever-changing entity and part of our technological landscape. But sometimes the biggest changes in the colocation industry happen at the core of what makes a data center tick, and may not be visible at first glance. In this instance, we’re talking about data center power, and the potential of creative solutions on the market, such as using Gallium nitride (GaN) in power conversion equipment.

eGaN® FETs and ICs Bring Precision Control to Surgical Robots

eGaN® FETs and ICs Bring Precision Control to Surgical Robots
11 14 2018

Minimal invasive surgery using surgical robots gives unprecedented control to surgeons looking to achieve the next level of precision, thereby reducing risk and trauma to the patient and speeding recovery. Many motors are required to control the various robotic appendages, such as arms, joints, and tool control, that give the surgical robot the required degrees of freedom (DOF) and dexterity to perform extremely delicate tasks. Weight and size of motor control circuitry are thus important factors in the design of such robots as they directly impact the size of the motor that manipulates the robot’s appendages during surgery.

The motor of choice for robotic surgery is the 3-phase brushless DC (BLDC) motor These motors are compact for their power rating, can be precisely controlled, offer high electro-mechanical efficiency, and can operate with minimal vibration when properly controlled. The choice of motor voltage lies in the range of 24 V to 48 V with balancing power conductor thickness and weight with insulation thickness and stiffness for optimum performance and dexterity being the determining factors.

eGaN FETベースのパワー段を最適なレイアウトで設計する方法

eGaN FETベースのパワー段を最適なレイアウトで設計する方法
10 24 2018

動機

eGaN® FETは、Si MOSFETよりもはるかに高速にスイッチングできるので、寄生インダクタンスを最小限に抑えるために、プリント回路基板のレイアウト設計に細心の注意を払わなければなりません。寄生インダクタンスによって、オーバーシュート電圧が大きくなり、スイッチングの遷移が遅くなります。このアプリケーション・ノートでは、これらの不要な影響を避け、コンバータの特性を最大限に引き出すために、eGaN FETを使って最適なパワー段のレイアウトを設計するための鍵となるステップについて検討します。

スイッチング動作への寄生インダクタンスの影響

図1に示すように、3つの寄生インダクタンス、すなわち、1)パワー・ループのインダクタンス(Lloop)、2)ゲート・ループのインダクタンス(Lg)、3)共通ソースのインダクタンス(Ls)によって、スイッチング特性が制限されます。eGaN FETのチップスケール・パッケージは、トランジスタ内部のインダクタンスをかなり排除しているので、主な制限要因としてプリント回路基板が残ります。各寄生インダクタンスは、動的電流経路とその戻りループによって囲まれる領域全体にあります(WP009:特性への寄生容量の影響を参照)。