GaNの話シリコンを粉砕するために捧げたブログ
Term: 窒化ガリウム
4 post(s) found

なぜ宇宙にGaNなのか?

なぜ宇宙にGaNなのか?
6 28 2020

SEE耐性や耐放射線特性を強化し、パッケージ化されたエンハンスメント・モード窒化ガリウム(eGaN)・デバイスは、成熟した耐放射線シリコンMOSFETに比べて、性能が劇的に改善され、これまでにない高周波、高効率、高電力密度で動作する宇宙における新世代のパワー・コンバータを可能にします。

ePower™ Stage:電力変換を再定義する

ePower™ Stage:電力変換を再定義する
3 16 2020

GaN技術は、性能とコストの改善だけでなく、電力変換市場に影響を与える最も重要な機会は、同じ基板上に複数のデバイスを集積する本質的な能力にあります。標準的なシリコンIC技術とは対照的に、GaN技術を使うと、モノリシックのパワー・システムを、より簡単でコスト効率の高い方法でワン・チップに集積できます。

eGaN FETベースのパワー段を最適なレイアウトで設計する方法

eGaN FETベースのパワー段を最適なレイアウトで設計する方法
10 24 2018

動機

eGaN® FETは、Si MOSFETよりもはるかに高速にスイッチングできるので、寄生インダクタンスを最小限に抑えるために、プリント回路基板のレイアウト設計に細心の注意を払わなければなりません。寄生インダクタンスによって、オーバーシュート電圧が大きくなり、スイッチングの遷移が遅くなります。このアプリケーション・ノートでは、これらの不要な影響を避け、コンバータの特性を最大限に引き出すために、eGaN FETを使って最適なパワー段のレイアウトを設計するための鍵となるステップについて検討します。

スイッチング動作への寄生インダクタンスの影響

図1に示すように、3つの寄生インダクタンス、すなわち、1)パワー・ループのインダクタンス(Lloop)、2)ゲート・ループのインダクタンス(Lg)、3)共通ソースのインダクタンス(Ls)によって、スイッチング特性が制限されます。eGaN FETのチップスケール・パッケージは、トランジスタ内部のインダクタンスをかなり排除しているので、主な制限要因としてプリント回路基板が残ります。各寄生インダクタンスは、動的電流経路とその戻りループによって囲まれる領域全体にあります(WP009:特性への寄生容量の影響を参照)。

窒化ガリウムは、D級オーディオに高音質と高効率をもたらします

窒化ガリウムは、D級オーディオに高音質と高効率をもたらします
10 27 2016

Class-D audio amplifiers have traditionally been looked down upon by audiophiles, and in most cases, understandably so. Switching transistors for Class-D amplifiers have never had the right combination of performance parameters to produce an amplifier with sufficient open-loop linearity to satisfy the most critical listeners. This restricted the classical analog modulator Class-D systems to lower-power, lower-quality sound systems.

To accomplish the required headline marketing THD+N performance targets, Class-D amplifiers have had to resort to using large amounts of feedback to compensate for their poor open-loop performance. By definition, large amounts of feedback introduce transient intermodulation distortion (TIM), which introduces a ‘harshness’ that hides the warm subtleties and color of the music that were intended for the listening experience.