GaNの話シリコンを粉砕するために捧げたブログ
Term: 48V
19 post(s) found

11 12, 2019

破壊の時が来た ―― GaNがシリコン・パワーMOSFETを正面攻撃へ

Alex Lidow, Ph.D., CEO and Co-founder

シリコンの時代は、十分すぎるほど長過ぎます。若くてより適切な挑戦者が半導体材料の主役を引き継ぐ時です。

4 24, 2019

最新世代の100 VのeGaN FETを使って、最も小型で、最も費用対効果が高く、最も効率が高い48 V入力、5~12 V出力の非絶縁型DC-DCコンバータを構築

Rick Pierson, Senior Manager, Digital Marketing

新たに出現したコンピューティング・アプリケーションは、はるかに小型でより多くの電力を必要とします。サーバー市場のニーズの拡大に加えて、最も困難なアプリケーションには、マルチユーザー・ゲーム・システム、自動運転車、人工知能などがあります。これらの用途は、プロセッサに近接したマザー・ボード上に詰め込めるDC−DCコンバータに対する需要を生み出しています。

4 03, 2019

eGaN FETを使った48 V入力、12 V出力の900 W小型LLC共振コンバータで98%以上の効率を得る

Rick Pierson, Senior Manager, Digital Marketing

コンピュータや電気通信の市場の急速な拡大によって、中間バス・コンバータ向けに、これまで以上に小型、高効率、高電力密度のソリューションが求められています。LLC共振コンバータは、高電力密度と高効率のソリューションを提供するための優れた候補です。非常に小さい低オン抵抗と寄生容量を備えたeGaN® FETsは、Si MOSFETを使うときに困難だった大幅な損失低減によってLLC共振コンバータに貢献します。EPC2053やEPC2024などのeGaN FETを採用した48 V入力、12 V出力の900 W、1 MHz動作の LLC DC-DCトランス(DCX)・コンバータがデモされ、電力密度1500 W / 立方インチ以上でピーク効率98.4%が得られています。

3 12, 2019

eGaN FETを使った48 V入力、6 V出力の900 W小型LLC共振コンバータで98%以上の効率を得る方法

Rick Pierson, Senior Manager, Digital Marketing

コンピュータや電気通信の市場の急速な拡大によって、中間バス・コンバータ向けに、これまで以上に小型、高効率、高電力密度のソリューションが求められています。LLC共振コンバータは、高電力密度と高効率のソリューションを提供するための優れた候補です。非常に小さいオン抵抗と寄生容量を備えた eGaN® FETは、Si MOSFETを使うときに困難だった大幅な損失低減によってLLC共振コンバータを高性能化します。EPC2053やEPC2023などのeGaN FETを採用した48 V入力、6 V出力の900 W、1 MHz動作の LLC DC-DCトランス(DCX)・コンバータがデモされ、比電力48 W / cm2(308 W / 平方インチ)、電力密度69 W / cm3(1133 W / 立方インチ)でピーク効率98.1%が得られています。

12 14, 2018

ヒートシンク付き高電力密度eGaNベース・コンバータの出力電力を一段と高める方法

Rick Pierson, Senior Manager, Digital Marketing

eGaN® FETとICは、小型、超高速スイッチング、低オン抵抗という特徴によって、非常に高電力密度のパワー・コンバータを設計できます。ほとんどの高電力密度コンバータの出力電力を制限している要因は接合部温度であり、より効果的な熱設計が求められます。eGaN のチップスケール・パッケージは、チップの上面、下面、および側面から効果的に熱を逃がし、6面冷却を実現できます。このアプリケーション・ノートでは、eGaN ベース・コンバータの出力電流能力を高めるための高性能の熱ソリューションを紹介します。

11 29, 2018

エネルギー需要とコストが増大するにつれてパワー・チェーンの選択肢として浮上するGaN

Rick Pierson, Senior Manager, Digital Marketing

このブログは、もともとData Center Frontier のウエブサイトに2018年11月5日にBill Kleyman氏によって公開されましたデータセンター向けのeGaN技術とEPCのGaNソリューションの詳細をご覧ください。

10 24, 2018

eGaN FETベースのパワー段を最適なレイアウトで設計する方法

Rick Pierson, Senior Manager, Digital Marketing

動機

eGaN® FETは、Si MOSFETよりもはるかに高速にスイッチングできるので、寄生インダクタンスを最小限に抑えるために、プリント回路基板のレイアウト設計に細心の注意を払わなければなりません。寄生インダクタンスによって、オーバーシュート電圧が大きくなり、スイッチングの遷移が遅くなります。このアプリケーション・ノートでは、これらの不要な影響を避け、コンバータの特性を最大限に引き出すために、eGaN FETを使って最適なパワー段のレイアウトを設計するための鍵となるステップについて検討します。

スイッチング動作への寄生インダクタンスの影響

図1に示すように、3つの寄生インダクタンス、すなわち、1)パワー・ループのインダクタンス(Lloop)、2)ゲート・ループのインダクタンス(Lg)、3)共通ソースのインダクタンス(Ls)によって、スイッチング特性が制限されます。eGaN FETのチップスケール・パッケージは、トランジスタ内部のインダクタンスをかなり排除しているので、主な制限要因としてプリント回路基板が残ります。各寄生インダクタンスは、動的電流経路とその戻りループによって囲まれる領域全体にあります(WP009:特性への寄生容量の影響を参照)。

10 07, 2018

効率95%で48 V入力、1 V / 10 A出力のVRMハイブリッド・コンバータ

Rick Pierson, Senior Manager, Digital Marketing

Gab-Su Seo1,2、Ratul Das1、and Hanh-Phuc Le1
1米コロラド大学のDepartment of Electrical, Computer, and Energy Engineering
2米国コロラドの国立再生可能エネルギー研究所のPower Systems Engineering Center

クラウド・コンピューティングやビッグデータ処理への需要が劇的に増加していることから、米国のデータセンターの電力消費量は、2020年までに730億kWhに達すると予測されています [1]。これは、米国全体の電力消費量の約10%を占めます。この消費の大部分は、非効率な電力供給アーキテクチャによる損失によって引き起こされ、改善のために大きな注意を払わなければなりません [2],[3]。

5 01, 2018

eGaN技術がクルマに来る

Alex Lidow, Ph.D., CEO and Co-founder

この記事は、もともとBodoのPower Systemsのウエブサイトに2018年5月に掲載されました。自動車自動車向けeGaN技術とEPCのGaNソリューションに関する詳細をご覧ください。