部落格:氮化鎵技術如何擊敗矽技術
Term: Gallium Nitride
18 post(s) found

Intellectual Power Amplifier Module based on GaN FETs

Intellectual Power Amplifier Module based on GaN FETs
五月 10 2021

Guest GaN Talk Blog by: Pavel Gurev, Sinftech Rus LLC

This article originally appeared in Bodo’s Power Systems April 2021

In the past few years, gallium-nitride (GaN) FETs have become more widespread in power electronics. Due to their outstanding characteristics, GaN FETs play an increasingly important role in miniaturization of the switching converters with very high-power densities exceeding 100 W / cm3 and more. The efficiency of converters based on GaN transistors can reach 99.5%. Due to the extension of the conversion frequency towards the MHz range, the magnetic components (chokes, transformers) also decrease in size significantly. However, designers face numerous challenges in implementing practical GaN transistor designs. The best family members are presented in wafer-level chip-scale package; the drivers are also quite miniature.

eToF™ Laser Driver ICs for Advanced Autonomy Lidar

eToF™ Laser Driver ICs for Advanced Autonomy Lidar
三月 22 2021

Co-written by Steve Colino

Laser drivers for light distancing and ranging (lidar) are used in a pulsed-power mode. What are the basic requirements for these laser drivers?

A new family of integrated laser driver ICs meets all these requirements.  The first release, the EPC21601 laser driver IC, integrates a 40 V, 10 A FET with integrated gate driver and 3.3 V logic level input in a single chip for time-of-flight (ToF) lidar systems used in robotics, surveillance systems, drones, autonomous cars, and vacuum cleaners. This chip offers frequency capability up to 200 MHz in a low inductance, economical, 1 mm x 1.5 mm BGA package.

Why GaN for DC-DC Space Designs

Why GaN for DC-DC Space Designs
三月 03 2021

Power electronics engineers are constantly working towards designs with higher efficiency and higher power density while maintaining high reliability and minimizing cost. Advances in design techniques and improved component technologies enable engineers to consistently achieve these goals. Power semiconductors are at the heart of these designs and their improvements are vital to better performance. In this EPC space blog, we will demonstrate how GaN power semiconductors allow for innovation in the harsh radiation environments of space applications.

GaN power semiconductors offer designers in the high reliability market a sudden and significant improvement in electrical performance over their silicon power MOSFET predecessors. Table 1 compares radiation hardened GaN and Si power semiconductor device characteristics important for circuit designers to increase efficiency and power density in their converter.

How to Design a Highly Efficient, 2.5 kW, Universal Input Voltage Range, Power Factor Correction (PFC) 400 V Rectifier Using 200 V eGaN® FETs

How to Design a Highly Efficient, 2.5 kW, Universal Input Voltage Range, Power Factor Correction (PFC) 400 V Rectifier Using 200 V eGaN<sup>®</sup> FETs
十一月 03 2020

Acknowledgement - This application note and associated hardware was developed in collaboration with Semiconductor Power Electronics Center (SPEC) at University of Texas at Austin.

Motivation

The expansion of applications such as cloud computing, wearables, machine learning, autonomous driving, and IoT drive us towards an even more data-intensive world, increasing demands on data centers and power consumption [1, 2]. The importance of efficiency, power density, and cost of the AC to DC switching power supply is driving innovative solutions that eGaN FETs can solve to yield ultra-high efficiency power factor correction (PFC) front-end rectifier solutions that are the focus of this how-to-application note.

A 95%-Efficient 48 V-to-1 V/10 A VRM Hybrid Converter

A 95%-Efficient 48 V-to-1 V/10 A VRM Hybrid Converter
十月 07 2018

Gab-Su Seo1,2, Ratul Das1, and Hanh-Phuc Le1
1Department of Electrical, Computer, and Energy Engineering, University of Colorado
2Power Systems Engineering Center, National Renewable Energy Laboratory, Colorado, U.S.A.

With drastically increasing demands for cloud computing and big data processing, the electric energy consumption of data centers in the U.S. is expected to reach 73 billion kWh by 2020 [1], which will account for approximately 10% of the U.S total electric energy consumption. A large portion of this consumption is caused by losses from inefficient power delivery architectures that require a lot of attention for improvements [2], [3].

Designing Manufacturable and Reliable Printed Circuit Boards Employing Chip-Scale eGaN FETs

Designing Manufacturable and Reliable Printed Circuit Boards Employing Chip-Scale eGaN FETs
九月 07 2017

Written by Michael de Rooij and Alana Nakata - Efficient Power Conversion

Published in: PCIM Europe 2017; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management; Proceedings of

eGaN FETs, which are available in non-traditional chip scale packages (CSP) as land grid array (LGA) and/or ball grid array (BGA) formats, have repeatedly demonstrated higher power density and higher efficiency performance than equivalent MOSFETs across various applications [1, 2]. Those improvements are contingent upon proper layout practices documented extensively in [1, 3] that minimize unwanted parasitic elements. Over the seven years since eGaN FETs were first launched into the market there have been a total of 127 device failures out of a total of more than 17 billion hours in actual use in the field, 75 of which were a result of poor assembly technique or poor printed circuit board (PCB) design practices [4]. Designers are becoming more familiar with the PCB design rules that affect manufacturability and are less forgiving compared to MOSFETs due to their relatively smaller sizes. This paper will cover the various guidelines for PCB design that maximize the performance of eGaN FETs and reliability yet still rely on existing PCB manufacturing capabilities.

氮化鎵技術在四方面拯救地球

氮化鎵技術在四方面拯救地球
四月 11 2017

Gallium nitride (GaN) is a better semiconductor than silicon. There are many crystals that are better than silicon, but the problem has always been that they are far too expensive to be used in every application where silicon is used. But, GaN can be grown as an inexpensive thin layer on top of a standard silicon wafer enabling devices that are faster, smaller, more efficient, and less costly than their aging silicon counterparts.

How we devised a wirelessly powered television set

How we devised a wirelessly powered television set
三月 09 2017

Televisions can get their content wirelessly, but there is one set of wires they still need: those in their power cord. The consumer electronics industry has floated ideas for freeing TVs from their power cords, but this goal remains elusive. There are several reasons, such as the difficultly of meeting high-power requirements for large-screen TVs and the need for identifying an economical technology. Nevertheless, eGaN FETs could play a role in making TVs truly cordless devices.

eGaN Technology Reliability and Physics of Failure – How eGaN FETs are expected to behave as the result of high gate voltage stress conditions

eGaN Technology Reliability and Physics of Failure – How eGaN FETs are expected to behave as the result of high gate voltage stress conditions
二月 03 2017

The previous installment in this series focused on the physics of failure surrounding thermo-mechanical reliability of EPC eGaN® wafer level chip-scale packages. A fundamental understanding of the potential failure modes under voltage bias is also important. This installment will provide an overview of the physics of failure associated with voltage bias at the gate electrode of gallium nitride (GaN) field effect transistors (FETs). Here we look at the case of taking the gate control voltage to the specified limit and beyond to investigate how eGaN FETs behave over a projected lifetime.

eGaN Technology Reliability and Physics of Failure - Thermo-mechanical board level reliability of eGaN devices

eGaN Technology Reliability and Physics of Failure - Thermo-mechanical board level reliability of eGaN devices
一月 13 2017

The first three installments in this series covered field reliability experience and stress test qualification of Efficient Power Conversion (EPC) Corporation’s enhancement-mode gallium nitride (eGaN®) field effect transistors (FETs) and integrated circuits (ICs).  Excellent field reliability that was documented is the result of applying stress tests covering the intended operating conditions the devices will experience within applications.  Of equal importance is understanding the underlying physics of how eGaN® devices will fail when stressed beyond intended operating conditions (e.g. datasheet parameters and safe operating area).  This installment will take a deeper dive into the physics of failure centered around thermo-mechanical reliability of eGaN® wafer level chip-scale packages (WLCSP).