新聞

客戶可以在我們的網頁 註冊 ,定期收取最新消息包括全新產品發佈、應用文章及更多其它資訊。如果你錯過了已發佈的消息,你可瀏覽以下的文檔。

採用晶片級封裝的氮化鎵元件熱建模

採用晶片級封裝的氮化鎵元件熱建模

與採用傳統矽元件的轉換器相比,採用氮化鎵基高電子遷移率電晶體 (HEMT) 具有許多材料和性能優勢,已廣泛用於消費和工業用功率轉換領域。氮化鎵元件在更高的開關頻率下提高了功率轉換效率,進而實現更低的系統成本和更高的功率密度。隨著功率密度的增加,散熱分析和熱建模變得至關重要。我們將在本文分享EPC的熱量計算器。 EPC公司製造增强型 GaN HEMT 和集成電路,例如支持多種轉換器的半橋元件。

Power Electronics News
2023年11月
閱讀文章

閱讀全文

Better thermal management of eGaN FETs

Better thermal management of eGaN FETs

A few simple thermal management guidelines can help conduct heat away from GaN FETs. Enhancement-mode gallium nitride (eGaN) FETs offer high power-density with ultra-fast switching and low on-resistance, all in a compact form factor. However, the power levels these high-performance devices provide can be limited by extreme heat-flux densities. If not managed properly, the generated heat can compromise reliability and performance. Fortunately, chip-scale packaging for eGaN FETs can be leveraged at the board-side and the backside (i.e., case) to better dissipate heat.

Power Electronics Tips
February, 2022
Read article

閱讀全文

Minimizing Thermo-mechanical Stress in Chipscale eGaN Devices

Minimizing Thermo-mechanical Stress in Chipscale eGaN Devices

Enhancement-mode gallium nitride (eGaN) FETs have demonstrated excellent thermomechanical reliability in actual operation in the field or when tested according to AEC or JEDEC standards. This is because of the inherent simplicity of the “package,” the lack of wire bonds, dissimilar materials, or mold compound. Recently, an extensive study of underfill products was conducted to experimentally generate lifetime predictions. A finite element analysis at the end of this section explains the experimental results and generates guidelines for selection of underfill based on key material properties.

Bodo's Power
March, 2021
Read article

閱讀全文

Thermal Management of Chip-Scale GaN Devices

Thermal Management of Chip-Scale GaN Devices

This article discusses the challenges that thermal management raises due to increase power density, especially with chip-scale packaging (CSP). What is sometimes overlooked, however, is that CSP eGaN® power FETs and integrated circuits have excellent thermal performance when mounted on standard printed circuit board (PCBs) with simple methods for attaching heat sinks. Simulations, supported by experimental verification, examine the effect of various parameters and heat flow paths to provide guidance on designing for performance versus cost.

Bodo’s Power Systems
February, 2021
Read article

閱讀全文

Thermal design for a high density GaN-based power stage

Thermal design for a high density GaN-based power stage

eGaN FETs and ICs enable very high-density power converter design, owing to their compact size, ultra-fast switching, and low on-resistance. The limiting factor for output power in most high-density converters is junction temperature, which prompts the need for more effective thermal design. The chip-scale packaging of eGaN FETs and ICs offer six-sided cooling, with effective heat extraction from the bottom, top, and sides of the die. This article presents a high-performance thermal solution to extend the output current capability of eGaN-based converters.

EDN
Read article

Best Practices for Integrating eGaN FETs

Best Practices for Integrating eGaN FETs

Best design practices utilize the advantages offered by eGaN FETs, including printed circuit board (PCB) layout and thermal management. As GaN transistor switching charges continue to decrease, system parasitics must also be reduced to achieve maximum switching speeds and minimize parasitic ringing typical of power converters.

Power Electronics
Read article

閱讀全文

採用晶片級封裝的氮化鎵(GaN)電晶體改善系統的熱性能

採用晶片級封裝的氮化鎵(GaN)電晶體改善系統的熱性能

隨著功率轉換器需要更高的功率密度,電晶體必須配合不斷在縮減的電路板面積。氮 化鎵(GaN)功率電晶體除了可以提高電源效率外,它們也必須具備更高的熱效率。在 這篇文章中,我們探討採用晶片級封裝的增強型氮化鎵場效應電晶體(eGaN ®FET) 的熱性能,並與最先進的Si MOSFET比較兩種元件的電氣性能和熱性能。

Bodo's China
2016年10月
閱讀全文

閱讀全文

Improving Thermal Performance with Chip-Scale Packaged Gallium Nitride Transistors

Improving Thermal Performance with Chip-Scale Packaged Gallium Nitride Transistors

With power converters demanding higher power density, transistors must be accommodated in an ever decreasing board space. Beyond gallium nitride based power transistors’ ability to improve electrical efficiency, they must also be more thermally efficient. This article evaluates the thermal performance of chip-scale packaged eGaN® FETs and compares their in-circuit electrical and thermal performance with state-of-the-art silicon MOSFETs.

Bodo’s Power Systems
David Reusch, Ph.D. and Alex Lidow, Ph.D.
June 1, 2016
Read article

閱讀全文
RSS