新聞

客戶可以在我們的網頁 註冊 ,定期收取最新消息包括全新產品發佈、應用文章及更多其它資訊。如果你錯過了已發佈的消息,你可瀏覽以下的文檔。

Growing GaN Ecosystem for BLDC Motor Drives

Growing GaN Ecosystem for BLDC Motor Drives

Gallium nitride (GaN) transistors and ICs have the best attributes to satisfy BLDC inverter needs. The superior switching capability of GaN helps to remove dead time and increase PWM frequency to obtain unmatched sinusoidal voltage and current waveforms for smoother, silent operation with higher system efficiency

Power Systems Design
May, 2023
Read article

閱讀全文

The EEcosystem Podcast: Dr. Alex Lidow: The Mind behind Power MOSFET and the Rise of GaN

The EEcosystem Podcast: Dr. Alex Lidow: The Mind behind Power MOSFET and the Rise of GaN

In this episode of The EEcosystem Podcast, our guest is Dr. Alex Lidow, CEO and co-founder of Efficient Power Conversion. In this episode, we will find out more about Alex and learn about MOSFETs and the rise of GaN. How did MOSFETs grow so quickly? What technologies are driving GaN adoptions and why. We will also discuss the potential obstacles to GaN adoption. This and many more questions will be answered as we go along! Listen to this episode to learn more!

April, 2023
View video

閱讀全文

GaN’s Evolution from Science Project to Mainstream Power Conductor

GaN’s Evolution from Science Project to Mainstream Power Conductor

Power-conversion technologies are experiencing the first tectonic shift since the move from bipolar to MOS. That shift, of course, is due to the viral adoption of wide-bandgap power devices. At this point, GaN is more than a specialty technology; it is a broad-scale replacement for silicon MOSFETs in applications ranging from 30 V up to 650 V — a multibillion-dollar market.

Power Electronics News
December, 2022
Read article

閱讀全文

功率系統採用GaN的5大誤區

功率系統採用GaN的5大誤區

我們將在本文討論客戶爲何遲遲未採用氮化鎵技術的一些最常見原因,氮化鎵技術顯然是較舊的矽基功率MOSFET的替代技術。在不深入詳細研究統計數據的情况下,按最常發生推導出一系列原因,並理解某些應用比其他應用更側重氮化鎵技術的某些特性。我們的討論僅限於額定電壓低於400 V的元件,因爲這是EPC公司的氮化鎵場效應電晶體和積體電路的重點應用。

PSD功率系統設計
2022 年3月
閱讀文章

閱讀全文

The Impact of GaN on Advanced Automotive Design

The Impact of GaN on Advanced Automotive Design

Wide-bandgap semiconductors like gallium nitride (GaN) and silicon carbide (SiC) are changing how people are thinking about power. In this video, Electronic Design talks to Alex Lidow, Founder and CEO of Efficient Powert Conversion (EPC), about the growing role of GaN in advanced embedded applications like automotive, among others such as space.

Electronic Design
January, 2022
View video

閱讀全文

CES 2022: GaN Technology for the Next Future

CES 2022: GaN Technology for the Next Future

The year 2021 was a transitional year in which the world decided to open its doors to GaN. In this interview with Power Electronics News during CES week, GaN industry experts confirmed that GaN is now proving its superiority over silicon.

Power Electronics News
January, 2022
Read article

閱讀全文

GaN Application Base Widens, Adoption Grows

GaN Application Base Widens, Adoption Grows

Mature, low-cost manufacturing and proven reliability spur use in EVs, smartphones, and consumer electronics.

Efficient Power Conversion (EPC) has logged more than 100 emerging applications for its eGaN FETs and ICs. Alex Lidow, the company’s CEO, said the five fastest-growing applications are lidar systems for robotics, drones, consumer products, driver alertness systems, and autonomous vehicles; DC-DC converters for AI systems, servers, and telecom power systems; motor drives for e-mobility and robotics; satellite systems, including motor drives and DC-DC power supplies that require radiation hardness; and solar power point trackers.

Semiconductor Engineering
December, 2021
Read article

閱讀全文

How GaN Integrated Circuits Are Redefining Power Conversion

How GaN Integrated Circuits Are Redefining Power Conversion

Gallium nitride (GaN) power devices have been in production for over 10 years and, beyond just performance and cost improvements, the most significant opportunity for GaN technology to impact the power conversion market comes from the intrinsic ability to integrate multiple devices on the same substrate. This capability will allow monolithic power systems to be designed on a single chip in a more straightforward, higher efficiency, and more cost-effective way.

Power Electronic News
March, 2021
Read article

閱讀全文

Efficient Power Conversion (EPC) Strengthens European Sales Team

Efficient Power Conversion (EPC) Strengthens European Sales Team

Stefan Werkstetter appointed as New Director of Sales for EMEA to focus on assisting customers in the adoption of eGaN® FETs and Integrated Circuits for applications including DC-DC, lidar, motor control, and other leading-edge power conversion systems

EL SEGUNDO, Calif. — November 2020 — To support the continued adoption of gallium nitride (GaN) FETs and Integrated Circuits in the European market, Efficient Power Conversion Corporation (EPC) is pleased to announce the appointment of Stefan Werkstetter as Director, Sales EMEA.

閱讀全文

氮化鎵元件緩解了矽元件的問題

氮化鎵元件緩解了矽元件的問題

就像生活要面對現實一樣,老年人離開舞臺而讓位給年輕人,矽元件也是需要向現實低頭。 隨著氮化鎵元件的問世和普及,正逐步淘汰舊有可靠的矽元件。 在過去的四十年中,隨著功率MOSFET元件的結構、技術和電路拓撲的創新與不斷增長的電力需求同步發展,電源管理的效率和成本一直以來得以穩步改善。 但是,在業界發展的新時代,隨著矽功率MOSFET元件接近其理論極限,其演進速度下降了很多。 同時,新材料氮化鎵的理論性能極限穩步發展,其性能極限比老化的MOSFET元件高出6,000倍,並且比目前市場上最好的氮化鎵產品高出300倍。

EEWeb
2020年7 月16日
閱讀全文

閱讀全文

矽片已死……離散功率元件快將消失

矽片已死……離散功率元件快將消失

在超過四十年中,隨著功率MOSFET元件的結構、技術和電路拓撲的創新,可滿足不斷增長的電力需求,因此改善了電源管理的效率和成本。 然而,在這新世紀的發展,隨著矽功率MOSFET元件已經接近其理論極限,其改進速度已大為減慢。 與此同時,一種全新材料 - 氮化鎵(GaN)- 正朝著新的理論性能領域的方向,穩步發展,其性能是老化的MOSFET元件的6,000倍,以及是目前市場的最優越GaN元件的300倍。

EETimes
2020年6月
閱讀全文

閱讀全文

氮化鎵與48 V應用 – 目前的發展及何去何從?

氮化鎵與48 V應用 – 目前的發展及何去何從?

中壓氮化鎵場效應電晶體(eGaN FET)的成本在三年前已經比等效額定功率MOSFET器件的成本更低。當時,EPC公司決心利用氮化鎵場效應電晶體的性能及成本效益優勢,積極研發及支持48 V輸入或輸出的應用。車用及電腦應用的48 V 轉換逐漸成為全新的架構,也成為了功率系統的全新標準。

Power Systems Design
2020年3月31日
閱讀全文

閱讀全文

GaN in Space

GaN in Space

This article discussed an oft forgotten or little-noticed part of the spacecraft enabling travel into outer space---power management in the space vehicle. Wide bandgap semiconductors like gallium nitride (GaN), silicon carbide (SiC), as well as diamond, are looking to be the most promising materials for future electronic components since the discovery of silicon. These technologies, depending upon their design, offer huge advantages in terms of power capability (DC and microwave), radiation insensitivity, high temperature and high frequency operation, optical properties and even low noise capability. Therefore, wide bandgap components are strategically important for the development of next generation space-borne systems. eGaN devices are quickly gaining momentum in the space industry and we will see many more applications for them by NASA and commercial contractors in future programs like Artemis and other programs in countries around the globe pursuing efforts into Space.

Power Systems Design
November, 2019
Read article

閱讀全文

功率半導體戰爭開始了

功率半導體戰爭開始了

氮化鎵(GaN)及碳化矽(SiC)元件的價格下調,對客戶而言,更為吸引。多家供應商推出基於氮化鎵及碳化矽的功率半導體,摩拳擦掌,正在爆發新一輪的半導體大戰,全速進攻傳統矽基元件的市場份額。

Semiconductor Engineering
2019年10月
閱讀文章

閱讀全文

The Amazing New World of Gallium Nitride

The Amazing New World of Gallium Nitride

From the heart of Silicon Valley comes a new buzzword. Gallium nitride is the future of power technology. Tech blogs are touting gallium nitride as the silicon of the future, and you are savvy enough to get in on the ground floor. Knowing how important gallium nitride is makes you a smarter, better consumer. You are at the forefront of your peer group because you know of an up and coming technology, and this one goes by the name of gallium nitride.

HACKADAY
Read article

PCIM Europe – where power is at the core of innovation

PCIM Europe – where power is at the core of innovation

This year’s PCIM Europe was attended by a record number of visitors, over 12,000. Over half (54%) were from outside Germany. They came to see over 500 exhibitors and while the subject matter was diverse and wide-ranging, there were some themes that emerged. GaN and SiC jostled for attention at this year’s PCIM Europe. Showing the potential that GaN has already realised, Efficient Power Conversion (EPC) had a stand that was well-stocked with examples of the eGaN FET technology that the company introduced in 2009.

Electronic Specifier
Read article

RSS
12345