新闻

客户可以在我们的网页 注册 ,定期收取最新消息包括全新产品发布、应用文章及更多其它资讯。如果你错过了已发布的资料,你可浏览以下的文档。

Efficient Power Conversion (EPC) Launches 40 V eGaN FET Ideal for High Power Density Solutions for USB-C Battery Chargers and Ultra-thin Point-of-Load Converters

Efficient Power Conversion (EPC) Launches 40 V eGaN FET Ideal for High Power Density Solutions for USB-C Battery Chargers and Ultra-thin Point-of-Load Converters

EPC introduces the 40 V, 3 milliohm EPC2055 eGaN® FET, offering designers a device that is smaller, more efficient, and more reliable than currently available devices for high performance, space-constrained applications.

EL SEGUNDO, Calif. — December 2020 — Efficient Power Conversion Corporation, the world’s leader in enhancement-mode gallium nitride on silicon (eGaN) power FETs and ICs, advances the performance capability of low voltage, off-the-shelf gallium nitride transistors with the introduction of the EPC2055 (3 mΩ, 40 V) eGaN FET. 

阅读全文

GaN Power Modules Deliver Over 1400 W/in3 for 48 V – 12 V DC-DC and Up to 10 MHz for Point-of-Load Power Conversion

GaN Power Modules Deliver Over 1400 W/in3 for 48 V – 12 V DC-DC and Up to 10 MHz for Point-of-Load Power Conversion

Efficient Power Conversion’s EPC9204 and EPC9205 power modules demonstrate the efficiency enhancements and significant size reduction achieved in DC-DC power conversion using high frequency switching eGaN® power transistors and integrated circuits.

EL SEGUNDO, Calif.— March 2018 — Efficient Power Conversion Corporation (EPC) introduces two new GaN power modules for DC-DC conversion, increasing efficiency across the 48 V to point-of-load power architecture. The EPC9205 is a high-power density PCB-based power module for 48 V – 12 V conversions while the EPC9204 address the 20 V – point-of-load conversion with an ultra-thin profile PCB-based power module.

阅读全文

EPC Announces Development Board Operating Up To 10 MHz for High Efficiency at High Frequency Point-of-Load DC-DC Conversion

EPC Announces Development Board Operating Up To 10 MHz for High Efficiency at High Frequency Point-of-Load DC-DC Conversion

The EPC9086 high efficiency half-bridge development board can operate up to 10 MHz featuring a 30 V EPC2111 eGaN® half bridge in combination with the recently introduced high speed Peregrine Semiconductor PE29102 gate driver.

EL SEGUNDO, Calif.—October 2017 — Efficient Power Conversion Corporation (EPC) today announces the availability of The EPC9086 development board, a high efficiency half-bridge development board that can operate up to 10 MHz.  The EPC9086 board measures 2” x 2” and contains a 30 V, 15 A EPC2111 enhancement-mode gallium nitride half bridge in combination with the recently introduced PE29102 gate driver from Peregrine Semiconductor.

阅读全文

宜普电源转换公司(EPC)推出高频单片式氮化镓半桥功率晶体管,推动 12 V转至1.8 V系统在5 MHz、14 A输出电流下实现超过85%效率

宜普电源转换公司(EPC)推出高频单片式氮化镓半桥功率晶体管,推动 12 V转至1.8 V系统在5 MHz、14 A输出电流下实现超过85%效率

EPC2111氮化镓半桥功率晶体管帮助系统设计师实现具更高效率的负载点系统应用,在14 A、12 V转至1.8 V、5 MHz开关时实现超过85%效率,及在10 MHz开关时实现超过80%效率。

宜普电源转换公司(EPC)宣布推出30 V的增强型单片式半桥氮化镓晶体管EPC2111)。透过集成两个eGaN® 功率场效应晶体管形成单个元件,可以去除互连电感及节省印刷电路板上元件之间的空隙。这样可以提高效率(尤其是在更高频率时)及提高功率密度,而且同时降低终端用户的功率转换系统的组装成本。EPC2111是高频12 V转至负载点DC/DC转换的理想元件。

阅读全文

宜普电源转换公司(EPC)推出具有50 A最大输出电流、1 MHz开关频率功能的开发板,专为负载点应用而设以缩小功率转换系统的尺寸

宜普电源转换公司(EPC)推出具有50 A最大输出电流、1 MHz开关频率功能的开发板,专为负载点应用而设以缩小功率转换系统的尺寸

面向大电流、高频的负载点应用的EPC9059开发板内含业界第一种单个半桥式增强型氮化镓(eGaN®)集成电路,可实现更高功率密度。

宜普电源转换公司(EPC)推出半桥式开发板(EPC9059),专为大电流、高频的负载点(POL)应用而设,目的是利用氮化镓集成电路(eGaN IC)的优势,缩小功率转换系统的尺寸。该板具有30 V最高器件电压、50 A 最大输出电流。在这应用中,两个30 V 的eGaN IC(EPC2100)并联工作并配备板载驱动器,从而可以实现更高的输出电流。与硅基MOSFET相比,由于氮化镓器件具有卓越的均流能力,因此更适合并联操作。

阅读全文

氮化镓场效应晶体管(eGaN FET)可提高工业应用的负载点转换器的效率及提升其功率密度

宜普产品应用总监David Reusch博士 / 销售及推广副总裁Stephen L.Colino

在24 V直流系统里采用的传统负载点转换器,设计工程师需要权衡使用一个高成本的隔离型转换器及使用一个低频及低效的降压转换器。与通常在计算机系统里使用的12 V负载点转换器相比,较高压的24 V负载点转换器因为需要考虑开关节点的振铃而需增加场效应晶体管的电压至最少达40 V,以及增加换向损耗及输出电容损耗。宜普公司的氮化镓场效应晶体管由于具备超低QGD性能, 从而可实现低换向损耗,并具备低QOSS性能,以实现较低输出电容损耗。

此外,宜普公司的氮化镓场效应晶体管具备创新的晶片级栅格阵列封装,在高频功率环路及栅极驱动环路,以及最重要的在这些环路的共通路径(称共源电感)都可容许超低电感,从而把换向损耗减至最低。氮化镓器件的低电荷及共源电感可帮助设计工程师通过提高频率使功率密度得以提高而并没有像传统MOSFET器件那样需要折衷效率。

阅读摘要

阅读全文