应用笔记

宜普电源转换公司(EPC)提供技术资源包括应用笔记及白皮书,以支持客户设计及评估基于氮化镓(GaN)器件的各种产品及解决方案。

采用增强型硅基氮化镓功率场效应晶体管eGaN FET (AN003)

使用氮化镓场效应晶体管(eGaN FET)与使用先进功率MOSFET是非常相似的。但是,由于氮化镓器件具备明显更高的性能,因此我们需要考虑额外的设计和测试因素,从而确保器件可以高效及可靠地工作。

组装eGaN FET (AN009)

EPC公司的eGaN FET和集成电路采用非常不一样的封装方法 -- 我们摒弃了功率半导体的封装并采用创新的晶圆级、芯片规模封装,从而实现具备高功率密度的最先进器件。

准确测量具备高速开关性能的氮化镓晶体管 (AN023)

由于氮化镓晶体管具备快速的开关速度,因此需要良好的测量技术及方法,以测量出高速波形图中重要的、详细的数据。本应用笔记主要描述如何针对使用者的要求及测量技术,利用测量设备准确地评估高效氮化镓晶体管的性能。

并联高速氮化镓晶体管 (AN020)

本应用笔记主要描述在需要更大输出电流的应用中如何并联高速氮化镓晶体管,并且讨论电路中的寄生电感如何影响器件的性能,以及建议PCB的布局方法,从而提高并联高速氮化镓晶体管的性能。

利用DrGaNPLUS简化您的设计 (AN019)

功率转换器设计师可以利用氮化镓基晶体管及集成电路实现更高的输出功率、更高的效率及更高的功率密度。本应用笔记描述功率转换系统设计师如何利用eGaN FET模组,容易地对具备卓越性能的氮化镓晶体管进行评估。

eGaN FET的散热性能 (AN011)

我们十分明白传统的硅基MOSFET的散热性能,但测量氮化镓场效应晶体管(eGaN FET)的散热性能则需要进一步的解释。本应用笔记探究eGaN FET的测试方法及其热阻的测量结果。

氮化镓场效应晶体管(eGaN FET)的安全工作区 (AN014)

温度限制功率晶体管的性能。计算器件的温度假设器件的有缘区域在平均功耗下运行,但这不一定是正确的。本应用笔记描述功率氮化镓晶体管的安全工作区(SOA)展示出很好的SOA特性之同时可以保持最低的阻抗,以及比较计算所得的器件温度和测量所得的结果。

利用器件模型构建仿真电路 (AN005)

一个准确的电路及器件模型是一个很有用的工具,可以开发出全新拓扑、构建各种成功的设计及缩短产品上市时间。本笔记描述EPC的各种器件模型,以及把EPC eGaN 器件放进电路模型时所需考虑的一些重要因素。

参数特征指南 (AN004)

EPC氮化镓晶体管的一般操作原理就像N沟道功率MOSFET一样。可以利用N沟道功率MOSFET所使用的参数曲线追踪仪(curve tracer)、参数分析仪及分立型器件参数自动测试仪来描述氮化镓晶体管的特性。本应用笔记指导使用Tektronix 576 curve tracer、Keithley 238参数分析仪及TESEC 881-TT/A 分立型器件测试系统,描述DC半导体参数特性。

直观特性指南 (AN010)

本应用笔记详细描述EPC的增强型晶体管及集成电路的物理特性,包括付运给客户前,器件必需符合的直观特性。

采用PQFN封装的氮化镓器件 - 如何实现可靠组装的焊接印刷模板设计指南(AN029)

本应用笔记针对采用PQFN封装的氮化镓晶体管和集成电路,为设计工程师提供焊接印刷模板设计指南。

优化死区时间以实现最高效率 (WP012)

本白皮书讨论优化芯片尺寸的方法,从而选取eGaN FET的最优阻抗,并利用应用例子展示结果。由于“最优”对不同的人来说是大不相同的,因此,这个工艺是针对在给定的负载条件下,器件如何实现最高开关效率。

选择氮化镓场效应晶体管的最优导通电阻 (WP011)

本白皮书讨论优化芯片尺寸的方法,从而选取eGaN FET的最优阻抗,并利用应用例子展示结果。由于“最优”对不同的人来说是大不相同的,因此,这个工艺是针对在给定的负载条件下,器件如何实现最高开关效率。

采用氮化镓场效应晶体管优化PCB的布局 (WP010)

本白皮书针对基于eGaN FET的POL降压转换器,探讨最优化的PCB布局、与传统设计比较及建议一个可以进一步降低寄生电感的全新最优化布局。

寄生电感对基于eGaN FET及MOSFET的负载点降压转换器性能的影响 (WP009)

由于eGaN FET改善开关FOM,要实现高性能,封装及PCB布局的寄生电感非常重要。本白皮书研究在开关频率为1 MHz、输入电压为12 V、输出电压为1.2 V及输出电流高达20 A的条件下,寄生电感对基于eGaN FET及MOSFET的负载点(POL)降压转换器性能的影响.

eGaN FET驱动器及布局所需考虑的因素 (WP008)

eGaN FET与硅器件不同的是,由于eGaN FET具备快很多的开关速度,因此他们对栅极驱动器、布局及热管理的要求不一样,而这些方面都可以互动。

eGaN FET 电学特性 (WP007)

本白皮书阐释eGaN FET的基本电学特性并与硅基MOSFET作出比较。我们必需明白这两种技术的同异,从而了解可否大幅度提升目前的功率转换系统的性能。

于电源转换领域,第5代晶体管的性能提升实现质的飞跃 (AN022)

Efficient Power Conversion Corporation (EPC), the world’s leader in enhancement mode gallium nitride on silicon (eGaN) power FETs and ICs has developed a next generation of eGaN technology that makes it possible to cut the size of our products in half, while giving the power system designer access to significantly higher performance. This is EPC’s fifth generation (Gen 5) GaN technology and it is further evidence that GaN-on-silicon is a rapidly improving technology that is already more than 10 X higher performance than silicon MOSFETs while costing less to produce.

eGaN FETs Deliver the Performance of GaN at the Price of Silicon (WP017)

Power transistors made using gallium nitride (GaN) instead of silicon have been in production for several years. A new line of eGaN FETs is now available that are not only much faster and smaller than power MOSFETs with similar on-resistance and voltage ratings, but these new transistors are priced favorably at comparable volumes. This is the first time in 60 years that there has been a non-silicon technology that has both superior performance and price compared with their silicon-based counterpart.

氮化镓集成器件实现更高直流-直流转换效率及功率密度 (AN018)

除了性能及成本得以改善外,由于氮化镓技术最大的机遇是它的固有特性可集成多个器件于相同的衬底上,因此对功率转换市场的影响深远。与常用的硅集成电路技术相反,氮化镓技术将来可让设计师更直接地及以低成本在单一晶片上实现单片式功率系统。

Fourth Generation eGaN FETs Widen the Performance Gap with the Aging MOSFET (AN017)

Fourth generation of GaN-on-silicon enhancement mode transistors (eGaN FETs) sets new performance records. This family of products range from 30 V to 200 V and significantly widen the performance gap between the aging power MOSFET and gallium nitride-based transistors.

Introducing a Family of eGaN FETs for Multi-Megahertz Hard Switching Applications (AN015)

In this application note we present the new EPC8000 series devices and highlight some of the key features that make this transistor family suitable for high frequency applications. That will be followed by two application examples, a 10 MHz envelope tracking converter and a 6.78 MHz class D wireless power transfer system. In conclusion, small signal RF characteristics will also be provided.

氮化镓功率晶体管的基础 (AN002)

The basic requirements for power semiconductors are effciency, reliability, controllability, and cost effectiveness. High frequency capability adds further value in size and transient response in regulators, and fidelity in class D amplifiers. Without effciency and reliability, a new device structure would have no chance of economic viability.

Is it the End of the Road for Silicon in Power Conversion (AN001)

For the past three decades, power management efficiency and cost have shown steady improvement as innovations in power MOSFET structures, technology, and circuit topologies have paced the growing need for electrical power in our daily lives. In the last few years, however, the rate of improvement has slowed as the silicon power MOSFET has asymptotically approached its theoretical bounds. Now the superior performance of gallium nitride technology is displacing the power MOSFET.

于48 V–12 V功率转换采用eGaN® FET的优势 (AN026)

本应用笔记展示出基于eGaN FET的非隔离型、已调节型的48 V – 12 V中间总线转换器的优化系统可以实现更高的功率密度及效率。此外,与传统的硅基解决方案相比,我们探讨基于eGaN FET的多级拓扑可进一步发挥eGaN FET的优势。

面向低压DC/DC应用的eGaN集成电路 (AN025)

本应用笔记介绍EPC公司的全新的EPC2112-包含集成式栅极驱动器 的eGaN集成电路,可以应用于27 W 、14 V - 48 V输入电压、19 V输出电压的、建于EPC9131 演示板的SEPIC(单端初级电感转换器)。SEPIC转换器非常适合采用宽阔的输入电压范围、输出电压可以低于或高于输入电压的应用。

面向激光雷达的eGaN FET – 发挥激光驱动器EPC9126的最大功效(AN027)

激光雷达(lidar)是一种雷达,其电磁辐射处于光波段范围内[1、2]。在过去几年间,业界有一种逐渐流行的激光雷达 -飞行时间(TOF)距离/景深测量。

eGaN FETs for Low Cost Resonant Wireless Power Applications (AN021)

Resonant wireless power systems use loosely-coupled, highly-resonant coils that are tuned to high frequencies (6.78 MHz or 13.56 MHz). The AirFuel Alliance has developed the standard for resonant wireless power applications. They address convenience-of-use issues such as source to device distance, device orientation on the source, multiple devices on a single source, higher power capability, simplicity of use, and imperfect placement.

Envelope Tracking Power Supply for Cell Phone Base Stations Using eGaN FETs (AN028)

Modern communication systems demand high data capacity and high speed. The long-term evolution (LTE) standard for the fourth-generation (4G) and the fifth-generation (5G) wireless systems requires signals with higher PAPR compared with prior generations. This increase reduces the efficiency of the power amplifier (PA). Envelope tracking, or supply modulation, uses a dynamic power supply to vary the PA supply voltage in accordance with the time-varying envelope of the input signal so that the efficiency of the PA is maximized.

eGaN FETs for Photo-Voltaic Inverter Applications (AN016)

Photo-Voltaic (PV) inverter size and cost are dominated by thermal management and passive elements used for bulk energy storage and filtering. Using eGaN FETs to increase efficiency and/or increase switching frequency will reduce the size and cost of the system.

eGaN FETs Small Signal RF Performance (WP016)

Even though the eGaN FET was designed and optimized as a power-switching device, it also exhibits good RF characteristics. EPC’s small 200 V eGaN FET was selected for RF evaluation and should be viewed as a starting point from which the RF characteristics of future eGaN FET part numbers can be optimized for even better RF performance at higher frequencies.

eGaN FETs in High Frequency Resonant Converters (WP015)

In this white paper eGaN FET technology is applied in a high frequency resonant converter. Previously, the advantages provided by eGaN FETs in hard switching isolated and non-isolated applications were addressed. This paper will demonstrate the ability of the eGaN FET to improve efficiency and output power density in a soft switching application, as compared to what is achievable with existing power MOSFET devices.

DC-DC

How to Design Synchronous Buck Converter Using GaN FET Compatible Analog Controllers with Integrated Gate Drivers (How2AppNote 025)

This application note will cover the layout and thermal design challenges. Finally, the performances are demonstrated by two design examples: a 48 V-12 V 600 W 2-phase buck converter and a 24 V to 5 V/3.3 V, 2 MHz dual output buck converter.

How to Design a 98% Efficient, 3 kW 2-phase, 3-level Converter Using Paralleled eGaN FETs (How2AppNote 034)

This application note shows how to design a 98% efficient 100–250 V to 40–60 V DC-DC converter taking advantage of the low RDS(on) of EPC2215. A 3-level topology offers a 2x reduction of voltage and current stresses, which improves overall efficiency.

How to Design a 2 kW 48 V/12 V Bi-Directional Power Module with packaged eGaN FETs (How2AppNote 031)

This application note discusses the design of a EPC9165, 2 kW, two-phase 48 V/12 V bi-directional converter using GaN FETs in QFN packages, achieving 96% efficiency. The heatsinking capability can be considered infinite since this will ultimately function inside a vehicle with the unit mounted to the chassis.

How to Design a High-Efficiency 48 V, 1.2 kW LLC Resonant Converter in a 1/8th Brick Size using eGaN FETs (How2AppNote 029)

To accommodate the increasing power requirement in the server applications, there is increasing demand on extracting more power from standard 48 V bus converters. This application note presents the design of a 1.2 kW, 4:1 conversion ratio, eGaN FET-based LLC resonant converter in the 1/8th power brick size for the 48 V server applications. The EPC9174 [1] converter module achieves 97.3% peak efficiency and 96.3% full-load efficiency.

How to Parallel Two 48 V/12 V Bi-Directional Power Modules (How2AppNote 027)

The 48 V/12 V automotive evaluation power modules (EPC9137, EPC9163, EPC9165, etc) utilize the two-phase synchronous buck/boost topology. The edge connectors and controller card are also designed to operate two modules in parallel with one controller, effectively achieving four-phase and therefore double the rated current and power

How to Design a 12 V to 48 V / 500 W 2-Phase Boost Converter Using eGaN FETs and the Renesas ISL81807 Controller (How2AppNote 024)

48 V is being adopted in many applications including AI systems, data centers, and mild hybrid electric vehicles. However, the conventional 12 V ecosystem is still dominant and so the need of a high power density 12 V to 48 V boost converter is required.

How to Design a 12 V-to-60 V Boost Converter with Low Temperature Rise Using eGaN® FETs (How2AppNote 023)

Modern displays typically require a low power boost converter. In this application, the screen intensity is low to moderate and the converter operates at light load most of the time, so the light load efficiency is very important.

How to Design a High-Efficiency 48 V, 1 kW LLC Resonant Converter in a 1/8th Brick Size Using eGaN FETs (How2AppNote 022)

This application note presents the design of a 1 kW, 4:1 conversion ratio, eGaN FET-based LLC resonant converter in the 1/8th power brick size for the 48 V server applications. The EPC9149 [5] converter module achieves 97.5% peak efficiency and 96.7% full-load efficiency.

How to Design a 1.5 kW 48 V/12 V Bi-Directional Power Module with AEC Qualified eGaN® FETs (How2AppNote 021)

This application note discusses the design of a 1.5 kW, two-phase 48 V/12 V bi-directional converter using automotive qualified GaN FETs that operates with 95% efficiency. The heatsinking capability can be considered infinite since this will ultimately function inside a vehicle with the unit mounted to the chassis. The design of this converter is scalable to 3 kW by paralleling two converters.

如何使用单片氮化镓 ePower™功率级设计双向、1/16砖式、48 V/12 V的转换器 (How2AppNote020)

砖式DC/DC转换器广泛用于数据中心、电信和车载应用,可将标称48 V总线转换为标称12 V总线(或从标称12 V总线转换)。 氮化镓集成电路技术的迅猛发展集成了半桥器件和栅极驱动器,从而实现单芯片解决方案,可简化布局、减小面积并降低成本。

How to Design a Thin DC/DC Power Module with Low Temperature Rise Using eGaN FETs (How2AppNote019)

As computers, displays, smart phones and other consumer electronics systems become thinner and more powerful, addressing the challenge of thinning the power converter and getting more power out of limited space without increasing the surface temperature increases in demand. This application note will look into designing a 44 V to 60 V input, 12 V to 20 V, 12.5 A output, thin DC/DC power module with low temperature rise using eGaN FETs in the simple and low-cost synchronous buck topology.

How to Design a 300 W 48 V to 12 V, 9 V, 5 V Digitally Controlled 1/16th Brick DC-DC Converter Using eGaN FETs (How2AppNote018)

Brick DC-DC converters are widely used in data center, telecommunication and automotive applications, converting a nominal 48 V to a nominal 12 V distribution bus among other output voltages. The main trend has been towards higher power density given the form factor is fixed. This application note discusses the design of a digitally controlled 1/16th brick converter using GaN FETs for a 48 V to 12 V, 9 V, 5 V application, with up to 25 A output current, 300 W output power, a peak efficiency of 95.8%, and maximum power density of 730 W/in3.

How to Design an Ultra-thin, Highly Efficient, Multi-level DC-to-DC Converter Using eGaN FETs (How2AppNote015)

Over the past decade, DC-to-DC power modules in datacom, telecom, and consumer electronics systems demand more power with increasing limitations on space and volume, requiring ultra-thin and highly efficient solutions. The multi-level converter is an exceptional candidate to shrink the size of the magnetic components and achieve high efficiency in a compact solution.

How to Exceed 98% Efficiency in a Compact 48 V to 6 V, 900 W LLC Resonant Converter Using eGaN FETs (How2AppNote014)

The rapid expansion of the computing and telecommunication market is demanding an ever more compact, efficient and high power density solution for intermediate bus converters. The LLC resonant converter is a remarkable candidate to provide a high power density and high efficiency solution. eGaN FETs with their ultra-low on-resistance and parasitic capacitances, benefit LLC resonant converters by significant loss reduction that is challenging when using Si MOSFETs.

采用eGaN FET的紧凑型48 V - 12 V、900 W LLC谐振转换器的效率超过98% (How2AppNote011)

运算和通信市场的迅速扩展要求中间总线转换器采用更紧凑、更高效和具有更高的功率密度的解决方案。LLC谐振转换器是提供具备高功率密度、高效解决方案的优秀选择。LLC谐振转换器受惠于具有超低导通阻抗和寄生电容的氮化镓场效应晶体管(eGaN FET),可大大降低功耗,高功耗是采用硅MOSFET的转换器的一大挑战。

Achieving Best-in-class 48 V to 12 V, 60 A DC-DC Converter Performance with the EPC9130 Multiphase Buck (How2AppNote010)

Single-phase buck converter can work efficiently at output currents up to 25 A, but the power efficiency drops significantly at higher currents. A compact, cost effective, high-power and high-efficiency 48 V to 12 V buck converter, suitable for high-power computing and telecommunication applications, can be achieved by employing eGaN FETs such as EPC2045 in a multiphase topology.

采用EPC2053氮化镓器件提高48 V转到5-12 V的DC/DC转换器的功率密度、可提供高达25 A的输出电流 (How2AppNote009)

采用氮化镓场效应晶体管(eGaN FET),例如EPC2053,可实现最微型、最具成本效益、最高效及可提供25 A 的输出电流的非隔离型48 V 转到5-12 V 转换器,适用于高效运算及电信应用。EPC9093开发板被配置为同步降压转换器,主要功率级的占板面积只是10毫米x9毫米,与等效硅元件相比,其体积最少缩小了两倍,而且输出电压可在5 V至12 V范围内。

采用EPC2045及集成电路氮化镓器件构建最小型化及最高效的48 V – 12 V DC/DC转换器 (How2AppNote001)

采用氮化镓场效应晶体管(eGaN® FET),例如EPC2045器件,可实现适用于高效运算及通信应用的最微型、最具成本效益及最高效的非隔离型48 V – 12 V 转换器。EPC9205被配置为一个同步降压转换器,当工作在48 V输入电压、12 V 输出电压及10 A负载条件下,可实现1400 W/in3 功率密度、5 V至12 V的输出电压范围及提供14 安培输出电流。

采用EPC2111氮化镓器件构建低成本、高效的12 V–1 V负载点(POL)转换器 (How2AppNote004)

采用单片半桥式eGaN集成电路(例如EPC2111)可以实现最微型、最具成本效益及最高效率的非隔离型12 V–1 V负载点转换器,适用于高效运算、比特币挖矿及电信等应用。EPC9204被配置为同步降压转换器,功率密度可达1000 W//in3 及可发送12安培电流。

激光雷达(Lidar)

如何构建一个可以看得更远、更清晰、成本更低的超快速及高功率激光驱动器! (How2AppNote002)

激光雷达(Lidar)是一种远距感测技术,从感测器发射光脉冲,并记录反射光线的时间,从而映射物件的位置及距离。氮化镓场效应晶体管具备超高性能,而且它采用芯片级封装,因此具有超低电感,使得它们成为脉冲激光驱动电路最理想的开关器件。

电机驱动器

How to Design a Vacuum Cleaner Motor Drive Inverter Using EPC9176 Evaluation Boards (How2AppNote033)

Due to the ever-increasing demand for highly efficient and compact motor drive applications, EPC has designed the EPC9176 boards eGaN IC-based to provide a reference design to achieve maximum performance for vacuum cleaner inverters.

How to Design an eBike Motor Drive Inverter Using EPC9173 Evaluation Board (How2AppNote032)

Due to the ever-increasing demand for highly efficient and compact motor drive applications, EPC has designed the EPC9173 board eGaN IC-based to provide a reference design to achieve maximum performance for the eBike inverters. The EPC9173 is based on six EPC23101 eGaN ICs. Such a board is a three-phase inverter capable of up to 1.5 kW operation; when powered with a 48 VDC supply voltage, it can deliver 20 ARMS per phase without a heatsink and with a heatsink it can provide continuously 25 ARMS per phase with peak operation up to 35 ARMS (for time intervals smaller than 30 seconds).

How to Design an e-bike Motor Drive Inverter Using EPC9167 and EPC9167HC Evaluation Boards (How2AppNote028)

Due to the ever-increasing demand for highly efficient and compact motor drive applications, EPC has designed the EPC9167 and EPC9167HC boards eGaN FET-based to provide a reference design to achieve maximum performance for the e-bike inverters.

How to Design a Compact Low-Voltage BLDC Motor Drive Inverter Using Automotive-Grade eGaN FETs (How2AppNote026)

Due to the ever-increasing demand for highly efficient and compact motor drive applications, EPC has designed the EPC9145 board eGaN FET-based to provide a reference design to achieve maximum performance in the field of motor drive inverters.

如何采用单片式氮化镓 ePower™ Stage 集成电路设计出紧凑型、低压无刷直流电机驱动逆变器 (How2AppNote017)

无刷直流电机(BLDC)非常受欢迎,其应用越来越多,包括机械人、电动车及无人机。这些应用有特别要求,包括轻型、小尺寸、低转矩脉动及精准控制。对电机供电的逆变器如果要符合这些要求, 必需在更高的频率下工作,但功耗会更高,所以需要采用先进的技术,降低功耗。

AC/DC

How to Design a 240 W Universal AC Input, 1.1 W/cm3 Power Density eGaN FET USB PD3.1 Power Supply (How2AppNote030)

EPC recently introduced the EPC9171[1], a GaN FET based USB power supply meeting the USB PD3.1 standard. With a universal input and 48 V output it can deliver up to 240 W and achieve 92% peak efficiency under both 120 VACRMS and 230 VACRMS input and 72 °C temperature rise (around the rectifier FETs).

如何采用200 V的eGaN FET设计出高效的2.5 kW、具有通用输入电压范围的400 V PFC整流器 (How2AppNote016)

随着各种日新月异的应用的发展,例如云计算、可穿戴设备、机械学习、全自动驾驶车辆及物联网,促使全球面对如何处理进一步庞大的数据及与日俱增的数据中心和功耗的要求 [1、2]。效率、功率密度及成本对AC/DC开关电源供电非常重要,这些因素推动了基于氮化镓场效应晶体管(eGaN FET)的创新解决方案的出现,从而实现基于超高效的前端PFC整流器的解决方案 – 这是本应用笔记的重点。

设计

针对eGaN®FET功率转换的生态系统的持续发展和完善 (How2AppNote005)

与等效硅基方案相比,由于基于氮化镓场效应晶体管(eGaN FET)的功率转换系统可实现更高的效率、更高的功率密度和更低的整体系统成本,它使得功率电子元件的生态系统日益增长,包括可提升eGaN FET性能的栅极驱动器、控制器和无源元件。

How to Design an eGaN FET-Based Power Stage with an Optimal Layout (How2AppNote007)

eGaN FETs are capable of switching much faster than Si MOSFETs, requiring more careful consideration of PCB layout design to minimize parasitic inductances. Parasitic inductances cause higher overshoot voltages and slower switching transitions. This application note reviews the key steps to design an optimal power stage layout with eGaN FETs, to avoid these unwanted effects and maximize the converter performance.

Designing PCB Footprint for EPC eGaN FETs and ICs (How2AppNote008)

EPC’s wafer level chip-scale packaging such as the Land Grid Array (LGA) and Ball Grid Array (BGA) packages shown in figure 1, has enabled a new level of performance in power conversion. Many of these parts use a fine pitch down to 400 μm which means a proper PCB footprint design is essential for consistent and reliable assembly of the GaN device. Here are the guidelines of designing a correct footprint for any EPC part working from the datasheet.

如何手工组装氮化镓场效应晶体管或集成电路 (How2AppNote003)

EPC公司的创新封装-芯片级、基板栅格阵列(LGA)及球栅阵列(BGA)封装(如图1所示)推动功率转换实现更高的性能。要发挥氮化镓技术的高效性能,必需使用合适的组装技术。以下是如何手工组装这些场效应晶体管或集成电路的指南。

How to Get More Power Out of a High-Density eGaN-Based Converter with a Heatsink (How2AppNote012)

eGaN FETs and ICs enable very high-density power converter design, owing to their compact size, ultra-fast switching, and low on-resistance. The limiting factor for output power in most high-density converters is junction temperature, which prompts the need for more effective thermal design. The chip-scale packaging of eGaN also offers six-sided cooling, with effective heat extraction from the bottom, top, and sides of the die. This application note presents a high-performance thermal solution to extend the output current capability of eGaN-based converters.

如何于应用中高效地测量出氮化镓场效应晶体管(eGaN® FET)的性能 (How2AppNote006)

随着基于eGaN FET的转换器的电路性能不断提高,对电路性能的测量的要求也在提升。 本文比较各种测量技术及对应用中的高性能氮化镓场效应晶体管的性能进行评估。