应用笔记

宜普电源转换公司(EPC)提供技术资源包括应用笔记及白皮书,以支持客户设计及评估基于氮化镓(GaN)器件的各种产品及解决方案。

采用增强型硅基氮化镓功率场效应晶体管eGaN FET (AN003)

使用氮化镓场效应晶体管(eGaN FET)与使用先进功率MOSFET是非常相似的。但是,由于氮化镓器件具备明显更高的性能,因此我们需要考虑额外的设计和测试因素,从而确保器件可以高效及可靠地工作。

组装eGaN FET (AN009)

EPC公司的eGaN FET和集成电路采用非常不一样的封装方法 -- 我们摒弃了功率半导体的封装并采用创新的晶圆级、芯片规模封装,从而实现具备高功率密度的最先进器件。

准确测量具备高速开关性能的氮化镓晶体管 (AN023)

由于氮化镓晶体管具备快速的开关速度,因此需要良好的测量技术及方法,以测量出高速波形图中重要的、详细的数据。本应用笔记主要描述如何针对使用者的要求及测量技术,利用测量设备准确地评估高效氮化镓晶体管的性能。

并联高速氮化镓晶体管(AN020)

本应用笔记主要描述在需要更大输出电流的应用中如何并联高速氮化镓晶体管,并且讨论电路中的寄生电感如何影响器件的性能,以及建议PCB的布局方法,从而提高并联高速氮化镓晶体管的性能。

利用DrGaNPLUS简化您的设计

功率转换器设计师可以利用氮化镓基晶体管及集成电路实现更高的输出功率、更高的效率及更高的功率密度。本应用笔记描述功率转换系统设计师如何利用eGaN FET模组,容易地对具备卓越性能的氮化镓晶体管进行评估。

eGaN FET的散热性能 (AN011)

我们十分明白传统的硅基MOSFET的散热性能,但测量氮化镓场效应晶体管(eGaN FET)的散热性能则需要进一步的解释。本应用笔记探究eGaN FET的测试方法及其热阻的测量结果。

氮化镓场效应晶体管(eGaN FET)的安全工作区(AN014)

温度限制功率晶体管的性能。计算器件的温度假设器件的有缘区域在平均功耗下运行,但这不一定是正确的。本应用笔记描述功率氮化镓晶体管的安全工作区(SOA)展示出很好的SOA特性之同时可以保持最低的阻抗,以及比较计算所得的器件温度和测量所得的结果。

利用器件模型构建仿真电路 (AN005)

一个准确的电路及器件模型是一个很有用的工具,可以开发出全新拓扑、构建各种成功的设计及缩短产品上市时间。本笔记描述EPC的各种器件模型,以及把EPC eGaN 器件放进电路模型时所需考虑的一些重要因素。

参数特征指南 (AN004)

EPC氮化镓晶体管的一般操作原理就像N沟道功率MOSFET一样。可以利用N沟道功率MOSFET所使用的参数曲线追踪仪(curve tracer)、参数分析仪及分立型器件参数自动测试仪来描述氮化镓晶体管的特性。本应用笔记指导使用Tektronix 576 curve tracer、Keithley 238参数分析仪及TESEC 881-TT/A 分立型器件测试系统,描述DC半导体参数特性。

直观特性指南 (AN010)

本应用笔记详细描述EPC的增强型晶体管及集成电路的物理特性,包括付运给客户前,器件必需符合的直观特性。

优化死区时间以实现最高效率 (WP012)

本白皮书讨论优化芯片尺寸的方法,从而选取eGaN FET的最优阻抗,并利用应用例子展示结果。由于“最优”对不同的人来说是大不相同的,因此,这个工艺是针对在给定的负载条件下,器件如何实现最高开关效率。

选择氮化镓场效应晶体管的最优导通电阻 (WP011)

本白皮书讨论优化芯片尺寸的方法,从而选取eGaN FET的最优阻抗,并利用应用例子展示结果。由于“最优”对不同的人来说是大不相同的,因此,这个工艺是针对在给定的负载条件下,器件如何实现最高开关效率。

采用氮化镓场效应晶体管优化PCB的布局 (WP010)

本白皮书针对基于eGaN FET的POL降压转换器,探讨最优化的PCB布局、与传统设计比较及建议一个可以进一步降低寄生电感的全新最优化布局。

寄生电感对基于eGaN FET及MOSFET的负载点降压转换器性能的影响 (WP009)

由于eGaN FET改善开关FOM,要实现高性能,封装及PCB布局的寄生电感非常重要。本白皮书研究在开关频率为1 MHz、输入电压为12 V、输出电压为1.2 V及输出电流高达20 A的条件下,寄生电感对基于eGaN FET及MOSFET的负载点(POL)降压转换器性能的影响.

eGaN FET驱动器及布局所需考虑的因素(WP008)

eGaN FET与硅器件不同的是,由于eGaN FET具备快很多的开关速度,因此他们对栅极驱动器、布局及热管理的要求不一样,而这些方面都可以互动。

eGaN FET 电学特性 (WP007)

本白皮书阐释eGaN FET的基本电学特性并与硅基MOSFET作出比较。我们必需明白这两种技术的同异,从而了解可否大幅度提升目前的功率转换系统的性能。

于电源转换领域,第5代晶体管的性能提升实现质的飞跃 (AN022)

Efficient Power Conversion Corporation (EPC), the world’s leader in enhancement mode gallium nitride on silicon (eGaN) power FETs and ICs has developed a next generation of eGaN technology that makes it possible to cut the size of our products in half, while giving the power system designer access to significantly higher performance. This is EPC’s fifth generation (Gen 5) GaN technology and it is further evidence that GaN-on-silicon is a rapidly improving technology that is already more than 10 X higher performance than silicon MOSFETs while costing less to produce.

eGaN FETs Deliver the Performance of GaN at the Price of Silicon (WP017)

Power transistors made using gallium nitride (GaN) instead of silicon have been in production for several years. A new line of eGaN FETs is now available that are not only much faster and smaller than power MOSFETs with similar on-resistance and voltage ratings, but these new transistors are priced favorably at comparable volumes. This is the first time in 60 years that there has been a non-silicon technology that has both superior performance and price compared with their silicon-based counterpart.

氮化镓集成器件实现更高直流-直流转换效率及功率密度 (AN018)

除了性能及成本得以改善外,由于氮化镓技术最大的机遇是它的固有特性可集成多个器件于相同的衬底上,因此对功率转换市场的影响深远。与常用的硅集成电路技术相反,氮化镓技术将来可让设计师更直接地及以低成本在单一晶片上实现单片式功率系统。

Fourth Generation eGaN FETs Widen the Performance Gap with the Aging MOSFET (AN017)

Fourth generation of GaN-on-silicon enhancement mode transistors (eGaN FETs) sets new performance records. This family of products range from 30 V to 200 V and significantly widen the performance gap between the aging power MOSFET and gallium nitride-based transistors.

Introducing a Family of eGaN FETs for Multi-Megahertz Hard Switching Applications (AN015)

In this application note we present the new EPC8000 series devices and highlight some of the key features that make this transistor family suitable for high frequency applications. That will be followed by two application examples, a 10 MHz envelope tracking converter and a 6.78 MHz class D wireless power transfer system. In conclusion, small signal RF characteristics will also be provided.

氮化镓功率晶体管的基础 (AN002)

The basic requirements for power semiconductors are effciency, reliability, controllability, and cost effectiveness. High frequency capability adds further value in size and transient response in regulators, and fidelity in class D amplifiers. Without effciency and reliability, a new device structure would have no chance of economic viability.

Is it the End of the Road for Silicon in Power Conversion (AN001)

For the past three decades, power management efficiency and cost have shown steady improvement as innovations in power MOSFET structures, technology, and circuit topologies have paced the growing need for electrical power in our daily lives. In the last few years, however, the rate of improvement has slowed as the silicon power MOSFET has asymptotically approached its theoretical bounds. Now the superior performance of gallium nitride technology is displacing the power MOSFET.

面向低压DC/DC应用的eGaN集成电路(AN025)

本应用笔记介绍EPC公司的全新的EPC2112-包含集成式栅极驱动器 的eGaN集成电路,可以应用于27 W 、14 V - 48 V输入电压、19 V输出电压的、建于EPC9131 演示板的SEPIC(单端初级电感转换器)。SEPIC转换器非常适合采用宽阔的输入电压范围、输出电压可以低于或高于输入电压的应用。

eGaN ICs for Low Cost Resonant Wireless Power Applications (AN024)

In this application note, we introduce two class-E amplifiers designed, built and tested using EPC’s gate driver integrated FETs the EPC2112 and EPC2115 for operation as an AirFuel™ Alliance compatible wireless power amplifier. Highly resonant wireless power systems operate at 6.78 MHz and eGaN® FET’s have proven to yield higher efficiency and power density designs over MOSFET versions. The ability to integrate multiple devices, performing additional functions such as synchronous bootstrapping, on a single monolithic substrate has further enhanced the performance of wireless power amplifiers.

eGaN FETs for Low Cost Resonant Wireless Power Applications (AN021)

Resonant wireless power systems use loosely-coupled, highly-resonant coils that are tuned to high frequencies (6.78 MHz or 13.56 MHz). The AirFuel Alliance has developed the standard for resonant wireless power applications. They address convenience-of-use issues such as source to device distance, device orientation on the source, multiple devices on a single source, higher power capability, simplicity of use, and imperfect placement.

eGaN FETs for Envelope Tracking Applications (WP013)

Gallium nitride transistors can be used to improve the efficiency of DC-DC conversion. In this white paper we look at a new application that is being enabled by gallium nitride technology that has been difficult to implement using traditional silicon MOSFET power devices.

eGaN FETs for Photo-Voltaic Inverter Applications (AN016)

Photo-Voltaic (PV) inverter size and cost are dominated by thermal management and passive elements used for bulk energy storage and filtering. Using eGaN FETs to increase efficiency and/or increase switching frequency will reduce the size and cost of the system.

eGaN FETs Small Signal RF Performance (WP016)

Even though the eGaN FET was designed and optimized as a power-switching device, it also exhibits good RF characteristics. EPC’s small 200 V eGaN FET was selected for RF evaluation and should be viewed as a starting point from which the RF characteristics of future eGaN FET part numbers can be optimized for even better RF performance at higher frequencies.

eGaN FETs in High Frequency Resonant Converters (WP015)

In this white paper eGaN FET technology is applied in a high frequency resonant converter. Previously, the advantages provided by eGaN FETs in hard switching isolated and non-isolated applications were addressed. This paper will demonstrate the ability of the eGaN FET to improve efficiency and output power density in a soft switching application, as compared to what is achievable with existing power MOSFET devices.

使用氮化镓场效应晶体管改善直流-直流正激式转换器的效率 (WP004)

DC-DC converter designers can achieve higher power density at lower power levels by using forward converters with synchronous rectification and gallium nitride transistors. One very typical application is a 26 W, 48 V to 5 V , Power over Ethernet Powered Device (PoE-PD).

使用氮化镓场效应晶体管改善直流-直流反激式转换器的效率 (WP003)

DC-DC converter designers can achieve low cost at low power densities by using flyback converters and enhancement mode gallium nitride transistors. To evaluate the performance of eGaN FETs in a flyback converter, two different converter designs were created and compared to MOSFET equivalent versions of the same design.

采用基于氮化镓场效应晶体管的降压转换器树立直流-直流转换效率的基准 (WP002)

Improvements in buck converters over the past few years have been limited by the power MOSFET’s sedate switching speeds which, in this “hard-switched” topology, translates into lower power conversion frequencies (size and cost), lower efficiency (size and cost), and lower VIN/VOUT ratios (less efficient power management systems). In this paper we show that eGaN FETs unlock a new spectrum of performance that can be translated into significant power conversion system cost and performance improvements.

Building the Smallest and Most Efficient 48 V to 12 V DC to DC Converter using EPC2045 (How2AppNote001)

The smallest, most cost effective and highest efficiency non-isolated 48 V to 12 V converter, suitable for high-performance computing and telecommunication applications, can be achieved by employing eGaN® FETs such as the EPC2045. The EPC9205 configured as a synchronous Buck converter yielded a power density of 1400 W/in3 and is capable of delivering 15 A.

How to Build an Ultra-Fast High-Power Laser Driver - That Sees Farther, Better, and at a Lower Cost! (How2AppNote002)

Light Detection and Ranging (LiDAR) is a remote sensing technology which transmits pulses of light from the sensor and measures the reflection to determine the location and distance of objects. The extremely high performance of GaN and the ultra-low inductance of the chip-scale package make eGaN FETs the ideal switches for pulsed laser drivers.

How to Manually Assemble an eGaN® FET or IC (How2AppNote003)

EPC’s innovative wafer level, Land Grid Array (LGA) and Ball Grid Array (BGA) packaging has enabled a new level of performance in power conversion. Proper assembly techniques are essential to take full advantage of GaN technology capability. Here are the guidelines for manual assembly of these FETs and ICs.

Data center power applications
LiDAR applications
Wireless power applications
Envelope tracking applications
Space applications
Class D Audio applications
Medtech applications
Motor control
Power inverter applications