EPC技术文章

Experts Weigh in on GaN & SiC at APEC 2024

In this video from Power Electronics News, a lineup of distinguished speakers from semiconductor companies shares insights into groundbreaking developments in gallium nitride– and silicon carbide–based power devices.

The GaN speakers address two critical questions shaping the future of wide bandgap:

  1. The significance of substrate material choice for GaN-based power devices. They elaborate on how this choice impacts device performance, reliability and manufacturability and discuss how researchers are tackling substrate-related challenges.
  2. Specific market segments where GaN devices are outperforming traditional silicon-based solutions, driving adoption and revealing the technology direction of their respective companies. The speakers include:
    • Robert Taylor, applications engineer/general manager industrial applications at Texas Instruments
    • Michael de Rooij, VP of applications engineering at EPC
    • Balu Balakrishnan, CEO of Power Integrations

View Video

Predicting GaN Device Lifetimes In Solar Microinverters And Power Optimizers

Microinverters and power optimizers are widely utilized in modern solar panels to maximize energy efficiency and conversion. Such topologies and implementations usually require a minimum of 25 years of lifetime, which is becoming a critical challenge for market adoption. Low-voltage gallium nitride (GaN) power devices (VDS rating < 200 V) are a promising solution and are being used extensively by an increasing number of solar manufacturers.

In this article, a test-to-fail approach is adopted and applied to investigate the intrinsic underlying wear-out mechanisms of GaN transistors. The study enables the development of physics-based lifetime models that can accurately project the lifetimes under the unique demands of various mission profiles in solar applications.

How2Power
August, 2023
Read article

In-situ RDS(on) Characterization and Lifetime Projection of GaN HEMTs under Repetitive Overvoltage Switching

Transient voltage overshoot is a common phenomenon in GaN high electron mobility transistors (HEMTs) under high slew rate switching conditions. The dynamic parametric instability under such stress is a critical concern for GaN applications. This work, for the first time, accurately characterized the evolution of dynamic on-resistance (RDS(on)) in GaN HEMTs under repetitive voltage overshoot up to billions of switching cycles. The dynamic RDS(on) increase was found to be the dominant device degradation under overvoltage switching. Such findings were obtained from a high-frequency, repetitive, unclamped inductive switching (UIS) test with active temperature control and accurate in-situ RDS(on) monitoring. A physics-based model was proposed to correlate the dynamic RDS(on) drift with the peak overvoltage, and a good agreement with experimental data was achieved. This model was further used to project the lifetime of GaN HEMTs. For 100 V rated GaN HEMTs switched under 100 kHz and 120 V spikes, the model projects less than 10% dynamic RDS(on) shift over 25 years of continuous operation. This work addresses the major concerns of overvoltage switching reliability of GaN HEMTs and provides new insights of the electron trapping mechanism.

IEEE Xplore
Ruizhe Zhang, Ricardo Garcia, Robert Strittmatter, Yuhao zhang, Shengke Zhange
Read article (IEEE subscription required)

Podcast: EPC’s Progress in GaN Reliability in RadHard and New Space Applications

In this episode of Spirit: Behind the Screen, Spirit Electronics CEO Marti McCurdy chats with EPC’s CEO Alex Lidow and Marketing Director Renee Yawger about the progress of GaN. They discuss GaN’s performance under high radiation as well as the extensive testing, failure modes and device lifespan detailed in EPC’s Phase 15 reliability report. With the full potential of GaN still to be explored and new EPC products releasing frequently, including new half-bridge drivers, low-side drivers and full power stage, GaN is especially useful in New Space and commercial space applications.

Spirit: Behind the Screen
Listen to podcast

Test-to-Fail Methodology for Accurate Reliability and Lifetime Evaluation of eGaN Devices in Solar Applications

Modern solar panels are demanding increasingly higher power density and longer operating lifetimes. Solar applications including power optimizers and panels with built-in microinverters are becoming the prevailing trend for an increasing number of solar customers, where low voltage GaN power devices (VDS < 200 V) are extensively used.

Bodo’s Power Systems
May, 2023
Read article

Better thermal management of eGaN FETs

A few simple thermal management guidelines can help conduct heat away from GaN FETs. Enhancement-mode gallium nitride (eGaN) FETs offer high power-density with ultra-fast switching and low on-resistance, all in a compact form factor. However, the power levels these high-performance devices provide can be limited by extreme heat-flux densities. If not managed properly, the generated heat can compromise reliability and performance. Fortunately, chip-scale packaging for eGaN FETs can be leveraged at the board-side and the backside (i.e., case) to better dissipate heat.

Power Electronics Tips
February, 2022
Read article

Bodo 宽带隙专家演讲 – 氮化镓半导体专题 - 2021 年 6 月

由 Bodo Power Systems 主办的氮化镓行业专家圆桌会议的嘉宾包括:

  1. EPC公司的首席执行官兼共同创始人Alex Lidow
  2. Power Integrations公司的市场营销与应用工程副总裁Doug Bailey
  3. Nexperia 公司的氮化镓功率技术营销战略总监Dilder Chowdhury
  4. Navitas Semiconductor公司的市场营销战略高级总监Tom Ribarich

于严峻情况下氮化镓器件如何工作 – 将eGaN FET置于远高于数据手册的电压和电流限值下工作

最近,EPC公司对其氮化镓场效应晶体管(eGaN FET)进行了一系列测试,把它置于超出数据手册的限值下工作,从而量化和发表这些器件通过电压和电流极端应力测试的结果。

Bodo’s Power Systems
2021年5月
阅读文章

Minimizing Thermo-mechanical Stress in Chipscale eGaN Devices

Enhancement-mode gallium nitride (eGaN) FETs have demonstrated excellent thermomechanical reliability in actual operation in the field or when tested according to AEC or JEDEC standards. This is because of the inherent simplicity of the “package,” the lack of wire bonds, dissimilar materials, or mold compound. Recently, an extensive study of underfill products was conducted to experimentally generate lifetime predictions. A finite element analysis at the end of this section explains the experimental results and generates guidelines for selection of underfill based on key material properties.

Bodo's Power
March, 2021
Read article

GaN Is Revolutionizing Motor Drive Applications

In last month’s Safety & Compliance column in How2Power, “WBG Semiconductors Pose Safety And EMI Challenges In Motor Drive Applications,”[1]Kevin Parmenter made some assertions about the difficulties of using SiC, and to a lesser extent GaN, power semiconductors in large motor-drive applications. This commentary is a response to that article, showing that GaN can be a game changer in low-voltage integrated motors.

How2Power
February, 2021
Read article

Intrinsic Failure Mechanisms in GaN-on-Si Power Transistors

Standard qualification testing for semiconductors typically involves stressing devices at-or-near the limits specified in their data sheets for a prolonged period of time, or for a certain number of cycles. The goal of qualification testing is to have zero failures out of a large group of parts tested. By testing parts to the point of failure, an understanding of the amount of margin between the data sheet limits can be developed, but more importantly, an understanding of the intrinsic failure mechanisms of the semiconductor can be found.

IEEE Power Electronics Magazine
December, 2020
Read article

GaN Reliability Testing Beyond AEC for Automotive Lidar

An automotive application using GaN power devices in high volume is lidar(light detection and ranging) for autonomous vehicles. Lidar technology provides information about a vehicle’s surroundings, thus requiring high accuracy and reliability to ensure safety and performance. This article will discus a novel testing mechanism developed by EPC to test eGaN devices beyond the qualification requirements of the Automotive Electronics Council (AEC) for the specific use case of lidar.

Power Systems Design
December, 2020
Read article

GaN Reliability Testing Beyond AEC Proves Robustness for Automotive Lidar Applications

Gallium nitride (GaN) power devices have been in volume production since March 2010 and have established a remarkable field-reliability record. An automotive application using GaN power devices in high volume is lidar (light detection and ranging) for autonomous vehicles. Lidar technology provides information about a vehicle’s surroundings, thus requiring high accuracy and reliability to ensure safety and performance. This article will discuss a novel testing mechanism developed by Efficient Power Conversion (EPC) to test eGaN devices beyond the qualification requirements of the Automotive Electronics Council (AEC) for the specific use case of lidar.

eeNews Europe
July 30, 2020
Read article

改善GaN 和SiC器件的可靠性

这些器件为什么越来越受欢迎?还有什么方面需要改善的?氮化镓(GaN)和碳化硅(SiC)功率器件的制造商将推出下一代具备全新性能和高规格的产品。但是,在系统中采用这些器件之前必需证明它们是可靠的。

Semiconductor Engineering
2020年6月
阅读全文

测试氮化镓器件在何时开始失效

从2010年3月起,氮化镓(GaN)功率器件已经实现高可靠性并进行量产。本章详细阐析如何测试出器件在何时开始失效,从而了解数据手册给出的器件工作条件,距离其工作极限值还有多少余量。而最重要的是,找出器件固有的失效机理,了解其失效的根本原因、恒常操作情况、温度、电气应力或机械应力等,从而找出产品在一般工作条件下,它的安全使用寿命。

Power Systems Design
2020年3月
阅读全文

Qualifying and Quantifying GaN Devices for Power Applications

It’s okay to start using gallium-nitride (GaN) devices in your new designs. GaN transistors have become extremely popular in recent years. These wide-bandgap devices have been replacing LDMOS transistors in many power applications. For example, GaN devices are broadly being adopted for new RF power amplifiers used in cellular base stations, radar, satellites, and other high-frequency applications. In general, their ability to endure higher voltages and operate at frequencies well into the millimeter-wave (mmWave) range have them replacing traditional RF power transistors in most amplifier configurations.

Electronic Design
November, 2019
Read article

为什么采用氮化镓器件?

氮化镓技术已经成熟至可以挑战传统的硅技术。从2010年起,商用的低压硅基氮化镓功率器件实现了很多全新应用。具备高速开关性能的氮化镓器件也推动了全新市场的出现,例如激光雷达、包络跟踪及无线电源市场。这些全新应用有助供应链的开发、实现低制造成本及良好的器件可靠性记录。这一切对于比较保守的DC/DC转换器、AC/DC转换器及车载应用的设计工程师来说,是很好的理据,是时候开始对氮化镓器件进行评了。本文探讨加快采纳氮化镓器件的各项因素。

Electronics Weekly
2019年1月
文章链接

硅基氮化镓功率器件如何把硅基功率MOSFET逐出?

专为高效电源转换而设的氮化镓功率晶体管已经投产7年多了。全新的市场例如激光雷达、包络跟踪及无线电源,都成为氮化镓的新兴市场,因为氮化镓具备超高速的的开关速度。这些市场使得氮化镓产品得以量产、成本更低及具备优越的可靠性。这些优势为比较保守的设计工程师提供更大的利好条件,因此,DC/DC转换器工程师、AC/DC转换器及车载应用工程师都开始对氮化镓器件进行评估。要把120亿美元的硅基MOSFET市场转为氮化镓市场,还有什么壁垒呢?就是信心的问题。设计工程师、制造工程师、采购经理及管理层都必需对氮化镓技术的优势有足够的信心、相信氮化镓技术可以解决设计师对采用全新技术的风险的疑问。让我们看看3个主要构成风险的因素:供应链、成本及产品的可靠性。

IEEE Spectrum
阅读文章

eGaN技术的可靠性及器件失效的物理原因 - 栅极电压应力测试

本系列的第四章中,我们探讨了采用晶圆级芯片规模封装的eGaN器件的热机械可靠性。同样重要的是,我们需要了解有栅极偏置时,器件有可能发生的故障模式。本章探讨氮化镓(GaN)场效应晶体管的栅极在偏置电压时失效的物理原因。我们把eGaN FET的栅极控制电压提升至特定的最大极限值和极限值以上,从而分析该器件在失效前的性能。

Planet Analog
Chris Jakubiec
2016年11月29日
阅读全文

博客(4):eGaN技术的可靠性及器件失效的物理原因

在本系列的第一、二及第三章中,我们详细讲解了关于EPC增强型氮化镓场效应晶体管(eGaN FET)及集成电路(IC)的现场可靠性及它们被认证通过应力测试。在应用中,我们把器件置于预期的工作条件下并施加应力,其测试结果引证了氮化镓器件的现场可靠性。同样重要的是了解 eGaN器件固有的物理特性,它如何在被施加应力后并超出预期工作条件时(例如数据表的参数及安全工作区(SOA))而失效。本章将进一步深入探讨失效的物理原因 -- 采用晶圆级芯片规模封装(WLCSP)的eGaN器件的热机械可靠性。

Planet Analog
Chris Jakubiec
2016年9月7日
阅读全文

RSS
12